[1] |
BAEK H, YUN W J, KWAK Y, et al. Joint Superposition Coding and Trainingfor Federated Learning Over Multi-Width Neural Networks[C]// IEEE INFOCOM 2022-IEEE Conference on Computer Communications.Piscataway:IEEE, 2022:1729-1738.
|
[2] |
GONG X, SHARMA A, KARANAM S, et al. Preserving Privacy in Federated Learning with Ensemble Cross-Domain Knowledge Distillation[C]// 2022 Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2022,1891-1899.
|
[3] |
SHEN Y, HE X, HAN Y, et al. Model Stealing Attacks Against Inductive Graph Neural Networks[C]// 2022 IEEE Symposium on Security and Privacy (SP).Piscataway:IEEE, 2022:1175-1192.
|
[4] |
KARIYAPPA S, QURESHI M K. Defending Against Model Stealing Attacks with Adaptive Misinformation[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2020:770-778.
|
[5] |
袁程胜, 郭强, 付章杰. 基于差分隐私的深度伪造指纹检测模型版权保护算法[J]. 通信学报, 2022, 43(9):181-193.
doi: 10.11959/j.issn.1000-436x.2022184
|
|
YUAN Chengsheng, GUO Qiang, FU Zhangjie. Copyright Protection Algorithm Based on Differential Privacy Deep Fake Fingerprint Detection Model[J]. Journal on Communications, 2022, 43(9):181-193.
doi: 10.11959/j.issn.1000-436x.2022184
|
[6] |
SHARMA S, ZOU J J, FANG G. A Dual Watermarking Scheme for Identity Protection[C]// 2020 Digital Image Computing:Techniques and Applications(DICTA).Piscataway:IEEE, 2022:1-30.
|
[7] |
LIU Z, LI F, LI Z, et al. LoneNeuron:A Highly-Effective Feature-Domain Neural Trojan Using Invisible and Polymorphic Watermarks[C]// Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2022:2129-2143.
|
[8] |
ALAM M, SAHA S, MUKHOPADHYAY D, et al. Deep-Lock:Secure Authorization for Deep Neural Networks(2020)[J/OL].[2020-08-13]. https://arxiv.org/abs/2008.05966.
|
[9] |
CHAKRABORTY A, MONDAI A, SRIVASTAVA A. Hardware-Assisted Intellectual Property Protection of Deep Learning Models[C]// 2020 57th ACM/IEEE Design Automation Conference (DAC).Piscataway:IEEE, 2020:1-6.
|
[10] |
WANG L, XU S, XU R, et al. Non-Transferable Learning:A New Approach for Model Ownership Verification and Applicability Authorization(2021)[J/OL].[2021-06-13]. https://arxiv.org/abs/2106.06916v1.
|
[11] |
WANG J, GUO S, XIE X, et al. Protect Privacy from Gradient Leakage Attack in Federated Learning[C]// IEEE INFOCOM 2022-IEEE Conference on Computer Communications.Piscataway:IEEE, 2022:580-589.
|
[12] |
WEI W, LIU L. Gradient Leakage Attack Resilient Deep Learning[J]. IEEE Transactions on Information Forensics and Security, 2021, 17:303-316.
doi: 10.1109/TIFS.2021.3139777
|
[13] |
徐花, 田有亮. 差分隐私下的权重社交网络隐私保护[J]. 西安电子科技大学学报, 2022, 49(1):17-26.
|
|
XU Hua, TIAN Youliang. Protection of Privacy of the Weighted Social Network under Differential Privacy[J]. Journal of Xidian University, 2022, 49(1):17-26.
|
[14] |
XIE H, ZHENG J, HE T, et al. MTEBDS:A Trusted Execution Environment-and-Blockchain-Supported IoT Data Sharing System[J]. Future Generation Computer Systems. 2023, 140:321-330.
doi: 10.1016/j.future.2022.10.016
|
[15] |
WU T, LI X, MIAO Y, et al. CITS-MEW:Multi-Party Entangled Watermark in Cooperative Intelligent Transportation System[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(3):3528-3540.
doi: 10.1109/TITS.2022.3225116
|
[16] |
TISHBY N, PEREIRA F C, BIALEK W. The Information Bottleneck Method(2000)[J/OL].[2000-04-24]. https://arxiv.org/abs/physics/0004057.
|
[17] |
ACHILLE A, SOATTO S. Emergenceof Invariance and Disentanglement in Deep Representations[J]. The Journal of Machine Learning Research, 2018, 19(1):1947-1980.
|
[18] |
COHEN G, AFSHAR S, TAPSON J, et al. EMNIST:Extending Mnistto Handwritten Letters[C]// 2017 International Joint Conference on Neural Networks (IJCNN).Piscataway:IEEE, 2017:2921-2926.
|
[19] |
KRIZHEVSKY A, HINTON G. Convolutional Deep Belief Networks on Cifar-10[J]. Unpublished Manuscript, 2010, 40(7):1-9.
|
[20] |
LIU X, LI H, XU G, et al. Privacy-Enhanced Federated Learning Against Poisoning Adversaries[J]. IEEE Transactions on Information Forensics and Security, 2021, 16:4574-4588.
doi: 10.1109/TIFS.2021.3108434
|
[21] |
MA Z, MA J, MIAO Y, et al. ShieldFL:Mitigating Model Poisoning Attacks in Privacy-Preserving Federated Learning[J]. IEEE Transactions on Information Forensics and Security, 2022, 17:1639-1654.
doi: 10.1109/TIFS.2022.3169918
|