›› 2014, Vol. 27 ›› Issue (2): 25-.

• 论文 • 上一篇    下一篇

基于ICA的多维贝叶斯分类器

唐兴佳,张秀方   

  1. (西安电子科技大学 理学院,陕西 西安 710071)
  • 出版日期:2014-02-15 发布日期:2014-01-12
  • 作者简介:唐兴佳(1987—),男,硕士研究生。研究方向:信息与盲信号处理。E-mail:tang-xingjia@163.com。张秀方(1988—),女,硕士研究生。研究方向:贝叶斯网络及应用。

Multi-dimensional Bayesian Network Classifiers Based on ICA

 TANG Xin-Jia, ZHANG Xiu-Fang   

  1. (School of Science,Xidian University,Xi'an 710071,China)
  • Online:2014-02-15 Published:2014-01-12

摘要:

多维贝叶斯分类器是处理多维分类问题的概率图形模型,其中属性变量可决定一个或多个类变量。文中针对属性变量维数较高和信息冗余问题,采用Fast ICA算法对属性变量进行降维,从而将高维属性变量约减为能较完整描述数据信息的低维属性变量。然后根据约减后的属性变量构建多维贝叶斯分类器;最终,通过理论分析得到基于ICA的多维贝叶斯分类器的性能较好。实验结果表明,对3组基准数据集的分类,基于ICA的多维贝叶斯分类器相比于其他算法具有较高的分类准确率。

关键词: 贝叶斯网络, 多维贝叶斯分类器, 独立成分分析, 互信息

Abstract:

Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models proposed to deal with multi-dimensional classification problems,where each feature variable determines one or more than one class variable.For the problem of high dimensional of feature attributes and information redundancy,the Independent Component Analysis (ICA) is applied to decrease the dimension of feature variable which could completely describe data.Then,we construct a multi-dimensional Bayesian network classifier according to the decreased data.Finally,the performance of the MBCs is proved good by theoretical analysis.The experiment results show that for three benchmark multi-dimensional data sets,the multi-dimensional Bayesian network classifier based on ICA outperforms other algorithms in accuracy.

Key words: bayesian network;multi-dimensional bayesian network classifiers;independent component analysis;mutual information

中图分类号: 

  • O29