[1]TSOUMAKAS G,KATAKIS I,VLAHAVAS I.Mining multi-label data[M].Springer:Data Mining and Knowledge Discovery Handbook,2010.
[2]BIELZA C,LI G,LARRANAGA P.Multi-dimensional classification with bayesian networks[J].International Journal of Approximate Reasoning,2011(52):705-727.
[3]YE Jimin,HUANG Ting.New Fast-ICA algorithms for blind source separation without prewhitening[J].Communications in Computer and Information Science,2011,255(2):579-585.
[4]PEARL J.Probabilistic reasoning in intelligent systems:networks of plausible inference[M].Morgan:Morgan Kaufmann Publishers,1988.
[5]KOLLER D,FRIEDMAN N.Probabilistic graphical models principles and techniques[M].Cambridge:MIT Press,2009.
[6]VAN DER GAAG L,DE WAAL P R.Multi-dimensional bayesian network classifiers[C].Shoul:Third European Conference on Probabilistic Graphical Models,2006:107-114.
[7]DE WAAL P R,VAN DER GAAG L C.Inference and learning in multi-dimensional bayesian network classifiers[C].European Conference on Symbolic and Quantitative Approaches to Reasoning under Uncertainty,Lecture Notes in Artificial Intelligence,2007,4724:501-511.
[8]RODRGUEZ J D,LOZANO J A.Multi-objective learning of multi-dimensional Bayesian classifiers[C].Beijing:Proceedings of the Eighth International Conference on Hybrid Intelligent Systems,2008:501-506.
[9]PROAKIS J.Digital communication[M].Columbus,USA:MeGraw-Hill,2000.
[10]TSOCHANTARIDIS I,JOACHIMS T,HOFMANN T,et al.Large margin methods for structure d and interdependent output variables[J].Journal o f Machine Learning Research,2005(6):1453-1484.
[11]BOUTELL M R,LUO J,SHEN X,et al.Learning multi-label scene classification[J].Pattern Recognition,2004,37(9):1757-1771.
[12]PAVLIDIS P,WESTON J,CAI J,et al.A kernel method for multi-labelled classification[J].Advances in Neural Information Processing Systems,MIT Press,2002(14):681-687.
[13]COOPER G F,HERSKOVITS E A.Bayesian method for the induction of probabilistic networks from data[J].Machine Learning,1992(9):309-347.
[14]ZHANG Minling,ZHOU Zhihua.Multi-label neural networks with applications to functional genomics and text categorization[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(10):1338-1351.
[15]HUANG J,CAI Y,XU X.A filter approach to feature selection based on mutual information[C].Beijing:Proceedings of the Fifth IEEE International Conference on Cognitive Informatics,2006:84-89.
[16]LIU Yue,YIN Yafeng,GAO Junjun,et al.Wrapper feature selection optimized SVM model for demand forecasting[C].Hunan:The International Conference onYoung Computer Scientists,2008:953-958.
[17]HUI-HUANG HSU,CHENG-WEI HSIEH,MING-DA LU.Hybrid feature selection by combining filters and wrappers[J].Expert Systems with Applications,2011,38(3):8144-8150. |