›› 2014, Vol. 27 ›› Issue (4): 179-.

• 论文 • 上一篇    下一篇

贝叶斯网络应用中的结构学习方法研究

张秀方,唐兴佳   

  1. (西安电子科技大学 理学院,陕西 西安 710071)
  • 出版日期:2014-04-15 发布日期:2014-05-14
  • 作者简介:张秀方(1988—),女,硕士研究生。研究方向:多维贝叶斯分类器。E-mail:zhangxiufang666@yeah.net

Structure Learning Methods in Bayesian Network Application

ZHANG Xiufang,TANG Xingjia   

  1. (School of Science,Xidian University,Xi'an 710071,China)
  • Online:2014-04-15 Published:2014-05-14

摘要:

贝叶斯网络是用于表示不确定变量之间潜在依赖关系的图形模型。结构学习是贝叶斯网络学习的核心,有效的结构学习方法和算法是构建最优网络结构的基础。文中对迄今为止贝叶斯网络应用中的结构学习方法进行探讨,从复杂度、适用性等方面对其进行分析比较,并指出每种方法的关键环节和主要思想,对实际应用中的方法选择和研究提供了参考。

关键词: 贝叶斯网络;结构学习;完备数据;不完备数据

Abstract:

Bayesian network is the graphical model used to describe potential dependencies between uncertain variables.Structure learning is the core of Bayesian network learning.The effective learning methods and algorithms of structure learning are the foundation of constructing Bayesian network.In this paper,we summarize the present achievement on Bayesian network structure learning,with a thorough analysis of their complexity and application presented and some key aspects and main idea of the methods pointed out.The summary is helpful in selecting proper methods in practical applications.

Key words: bayesian network;structure learning;compete data;incomplete data

中图分类号: 

  • O29