›› 2015, Vol. 28 ›› Issue (5): 124-.

• 论文 • 上一篇    下一篇

基于小波变换的多神经网络胸片骨骼分离

陈胜,璩心波   

  1. (上海理工大学 光电信息与计算机工程学院,上海 200093)
  • 出版日期:2015-05-15 发布日期:2015-05-19
  • 作者简介:陈胜(1976—),男,博士,副教授,硕士生导师。研究方向:胸片图像处理。Email:615728611@qq.com。璩心波(1989—),男,硕士研究生。研究方向:数字图像处理。

Chest Bone Segmentation Based on Wavelet Transform and Massive Training Artificial Neural Network

CHEN Sheng,QU Xinbo   

  1. (School of OpticalElectrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200090,China)
  • Online:2015-05-15 Published:2015-05-19

摘要:

胸片中,因大量肺结点被锁骨或肋骨遮挡而被放射科医生忽略。为了从胸片图像中分割出骨骼结构,提出了一种基于小波变换的多分辨率人工神经网络,以获取去除骨骼结构的虚拟软组织胸片。该方法可有效保证肺结点与血管的清晰度,且分离出骨骼和软组织可有效地帮助放射医生检测肺结点。

关键词: X光胸片, 肺结点, 计算机辅助检测, 人工神经网络

Abstract:

A large number of lung nodules are missed by radiologists because they are hidden behind ribs or clavicles in chest radiographs.The purpose of this study is to separate the bony structure,such as ribs and clavicles from soft tissue in CXRs.To achieve this goal,we developed a multiresolution massive training artificial neural network based on the wavelet transform.By this method,the visibility of nodules and lung vessels are guaranteed.And the separation of bones from the soft tissue would be potentially useful for radiologists in the detection of lung nodules.

Key words: chest radiography;lung nodules;computeraided diagnosis;artificial neural network

中图分类号: 

  • TP391.41