›› 2015, Vol. 28 ›› Issue (7): 105-.

• 论文 • 上一篇    下一篇

基于密度的K-means初始聚类中心选取算法

韩凌波   

  1. (中共湛江市委党校 干部在线学习管理科,广东 湛江 524032)
  • 出版日期:2015-07-15 发布日期:2015-07-13
  • 作者简介:韩凌波(1982—),男,硕士,高级工程师。研究方向:数据挖掘,人工智能。E-mail:hanlingbo@163.com

K-means Initial Clustering Center Selection Algorithm Based on Density

HAN Lingbo   

  1. (Cadres Online Learning Management Department,Party School of Zhanjiang Committee of CPC,Zhanjiang 524032,China)
  • Online:2015-07-15 Published:2015-07-13

摘要:

传统K-means算法的初始聚类中心从数据集中随机抽取,聚类结果会随着初始聚类中心的不同而产生波动。针对这一问题,提出一种基于密度的优化初始聚类中心选取算法,通过计算每个数据对象的密度参数和邻域距离,选取k个处于高密度分布的点作为初始聚类中心。在聚类类别数给定的情况下,使用标准的UCI数据库进行对比实验,发现改进后的算法较传统算法有相对较高的准确率和稳定性。

关键词: K means算法, 聚类中心, 密度参数, 邻域距离

Abstract:

The initial clustering center of the traditional K-means algorithm is generated randomly from the data set,and the clustering results fluctuate with the initial cluster centering of different.A new improved K-means algorithm based on density is proposed,by which the density parameter and neighborhood distance of every data object is computed,then k point in high density parameter are chosen as the initial clustering centers.A comparison is made using UCI database as testing datasets with given number of clusters.The clustering results demonstrate that the improved algorithm can enhance the clustering stability and accuracy relatively.

Key words: K means algorithm;clustering center;density parameter;neighborhood distance

中图分类号: 

  • TP311.12