电子科技 ›› 2019, Vol. 32 ›› Issue (5): 1-4.doi: 10.16180/j.cnki.issn1007-7820.2019.05.001

• •    下一篇

基于虚拟现实的恐惧测量模型建立

郝文强1,MathildeMagontier2   

  1. 1. 杭州电子科技大学 生命信息与仪器工程学院,浙江 杭州 310018
    2. 巴黎笛卡尔大学 感知与运动平台,巴黎 75270
  • 收稿日期:2018-07-23 出版日期:2019-05-15 发布日期:2019-05-06
  • 作者简介:郝文强(1993-),男,硕士研究生。研究方向:生物医学工程。|Mathilde Magontier (1992-),女,硕士研究生。研究方向:神经工程。
  • 基金资助:
    国家自然科学基金(61086338)

The Construction of Fear Measuring Model Based on Virtual Reality

HAO Wenqiang1,Mathilde Magontier2   

  1. 1. School of Life Information Science and Instrument Engineering, Hangzhou Dianzi University,Hangzhou 310018,China
    2. Platform of Perception and Motion,Paris Descartes University,Paris 75270,France
  • Received:2018-07-23 Online:2019-05-15 Published:2019-05-06
  • Supported by:
    National Natural Science Foundation of China(61086338)

摘要:

恐惧程度的客观评价在心理健康评估和职业能力评测中具有重要的作用。在沉浸式训练过程中,生理和运动数据有助于提升交互界面设计,增加虚拟训练的安全性。文中使用头戴式VR系统HTC Vive实现沉浸式VR体验,利用OpenVR开源软件包采集控制器和头部的位置信息,并结合Equivital belt EQ02 Lifemonitor所采集的心电信号、躯体加速度实现多种信号的特征提取。文中使用递归特征消除的特征排序方法和支持向量回归从50个生理及运动特征中选取了10个特征。基于自测恐惧值和特征的多元多项式回归实现了准确率为90%的二分类,即完成了对受试者恐惧或者非恐惧的分类。

关键词: 恐惧测量模型, 虚拟现实, 生理信号, 运动表现, 支持向量回归, 递归特征消除

Abstract:

The objective evaluation of the degree of fear plays an important role in mental health and professional ability assessment. Physiological and exercise data in the immersive training process can improve the interface design and increase the safety of virtual training. This article used the HTC Vive head-mounted VR system to realize the immersive VR experience. OpenVR open source software package was used to collect the position information of the controller and the head, which was combined the ECG signals and body acceleration collected by the Equivital belt EQ02 Lifemonitor to realize feature extraction of various signals. In this paper, the feature ranking method and support vector regression utilizing recursive feature elimination were used to select 10 features from 50 physiological and motion features. Finally, the multivariate polynomial regression based on self-tested fear values and features achieved a binary classification with an accuracy rate of 90%, which completed the classification of fear or non-fear of the subject.

Key words: fear measuring model, virtual reality, physiological signals, movement and performance, SVR, recursive feature elimination

中图分类号: 

  • TN99