[1] |
Naghavi M, Wang H, Lozano R , et al. Global,regional,and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013:a systematic analysis for the Global Burden of Disease Study 2013[J]. The Lancent, 2015,385(9963):117-171.
|
[2] |
刘宇, 陈胜 . 医学图像分割算法综述[J]. 电子科技, 2018,30(8):169-172.
|
|
Liu Yu, Chen Sheng . Overview of medical image segmentation algorithms[J]. Electronic Science and Technology, 2018,30(8):169-172.
|
[3] |
Krishnan K R, Sudhakar R . Automatic classification of liver diseases from ultrasound images using glrlm texture features[J].Soft Computing Applications, Springer Berlin Heidelberg 2013(5):611-624.
|
[4] |
Lee W L . An ensemble-based data fusion approach for characterizing ultrasonic liver tissue[J]. Applied Soft Computing Journal, 2013,13(8):3683-3692.
doi: 10.1016/j.asoc.2013.03.009
|
[5] |
Ribeiro R, Rui T M, Suri J , et al. Ultrasound liver surface and textural characterization for the detection of liver cirrhosis[J].Abdomen and Thoracic Imaging 2014(3):145-168.
|
[6] |
Kalyan K, Jakhia B, Lele R D , et al. Artificial neural network application in the diagnosis of disease conditions with liver ultrasound images[J]. Advances in Bioinformatics, 2014,2014(4):11-14.
|
[7] |
Wen-Li L, Yung-Chang C, Kai-Sheng H . Ultrasonic liver tissues classification by fractal feature vector based on M-band wavelet transform[J]. IEEE Transactions on Medical Imaging, 2003,22(3):382-392.
|
[8] |
Virmani J, Kumar V, Kalra N , et al. Prediction of liver cirrhosis based on multiresolution texture descriptors from B-mode ultrasound[J]. International Journal of Convergence Computing, 2013,1(1):19-37.
|
[9] |
Lee W L, Hsieh K S . A robust algorithm for the fractal dimension of images and its applications to the classification of natural images and ultrasonic liver images[J]. Signal Processing, 2010,90(6):1894-1904.
|
[10] |
Mojsilovic A, Popovic M, Markovic S , et al. Characterization of visually similar diffuse diseases from B-scan liver images using nonseparable wavelet transform[J]. IEEE Transactions on Medical Imaging, 1998,17(4):541-549.
|
[11] |
Wu C M, Chen Y C, Hsieh K S . Texture features for classification of ultrasonic liver images[J]. IEEE Transactions on Medical Imaging, 1992,11(2):141-152.
|
[12] |
孟繁坤, 丁蕾, 曲锰 , 等. 高频超声观察肝实质形态的改变对慢性肝病肝纤维化分期的价值[J]. 中国医学影像技术, 2006,22(6):916-918.
|
|
Meng Fankun, Ding Lei, Qu Meng , et al. The value of morphological changes of liver parenchyma observed by high frequency ultrasound in staging of liver fibrosis in chronic liver diseases[J]. Chinese Medical Imaging Technology, 2006,22(6):916-918.
|
[13] |
Liu X, Zhan Z, Yan M, et al. Computer-aided cirrhosis diagnosis via automatic liver capsule extraction and combined geometry-texture features [C].Hong Kong: IEEE International Conference on Multimedia and Expo, 2017.
|
[14] |
宋家琳, 刘翔, 章建全 , 等. 高频超声影像肝脏包膜几何特征定量评价患者肝硬化程度[J]. 中国医学影像技术, 2015,31(12):1907-1910.
|
|
Song Jialin, Liu Xiang, Zhang Jianquan , et al. Quantitative evaluation of cirrhosis degree by geometric features of liver capsule on high frequency ultrasound images[J]. Chinese Medical Imaging Technology, 2015,31(12):1907-1910.
|
[15] |
Zhao J, Wang S H, Liu X , et al. Early diagnosis of cirrhosis via automatic location and geometric description of liver capsule[J].Visual Computer 2017(9963):1-13.
|
[16] |
Liu X, Song J L, Wang S H , et al. Learning to diagnose cirrhosis with liver capsule guided ultrasound image classification[J]. Sensors, 2017,17(1):149.
|
[17] |
Liu X, Song J L, Zhao J W, et al. Extracting and describing liver capsule contour in high-frequency ultrasound image for early HBV cirrhosis diagnosis [C].Seattle:IEEE International Conference on Multimedia and Expo, 2016.
|
[18] |
Krag A, Bendtsen F, Henriksen J H , et al. Low cardiac output predicts development of hepatorenal syndrome and survival in patients with cirrhosis and ascites[J]. Digest, 2010,59(1):105-110.
|