电子科技 ›› 2020, Vol. 33 ›› Issue (8): 10-16.doi: 10.16180/j.cnki.issn1007-7820.2020.08.002

• • 上一篇    下一篇

一种快速的突变点在线检测算法设计与实现

邹俊晨,齐金鹏,李娜,刘佳伦,朱厚杰   

  1. 东华大学 信息科学与技术学院,上海 201620
  • 收稿日期:2019-05-21 出版日期:2020-08-15 发布日期:2020-08-24
  • 作者简介:邹俊晨(1994-),男,硕士研究生。研究方向:大数据异常检测。|齐金鹏(1977-),男,博士,副教授。研究方向:大数据异常检测,图像处理。
  • 基金资助:
    国家自然科学基金(61305081);国家自然科学基金(61104154);上海市自然科学基金(16ZR1401300);上海市自然科学基金(16ZR1401200)

Design and Implementation of a Fast Online Algorithm for Mutation Point Detection

ZOU Junchen,QI Jinpeng,LI Na,LIU Jialun,ZHU Houjie   

  1. School of Information Science & Technology,Donghua University,Shanghai 201620,China
  • Received:2019-05-21 Online:2020-08-15 Published:2020-08-24
  • Supported by:
    National Natural Science Foundation of China(61305081);National Natural Science Foundation of China(61104154);Natural Science Foundation of Shanghai(16ZR1401300);Natural Science Foundation of Shanghai(16ZR1401200)

摘要:

传统TSTKS算法是一种离线突变点检测算法,该算法在待检测数据存在多个突变点时准确度较低。针对这一问题,文中结合TSTKS算法与滑动窗口理论,提出了一种快速时序数据突变点在线检测方法。该方法利用滑动窗口的思想将待检测数据切分为若干子段,并根据窗口顺序对每个子段采用TSTKS算法进行突变点检测,进而实现时序数据多突变点快速检测。实验结果表明,相比于常见的几种突变点检测算法,采用文中提出算法对存在多突变点的时序数据进行检测时耗时较少,相对误差率较低且命中率较高。

关键词: TSTKS算法, 突变点检测, 三叉搜索树, 滑动窗口理论, 时序数据, 在线检测

Abstract:

The traditional TSTKS algorithm is an offline mutation point detection algorithm, which has low accuracy when there are multiple mutation points in the time series data. To solve this problem, TSTKS algorithm and sliding window theory were combined to propose an online detection method for fast time series data mutation points. The method used sliding window to divide the data into several sub-segments, and took TSTKS algorithm to detect the mutation point for each sub-segment according to the order of window, so as to realize the rapid multi-mutation points detection of time series data. The results showed that compared with the common algorithms, the proposed algorithm took less time, had lower relative error rate and higher hit rate in multiple mutation points detection

Key words: TSTKS algorithm, mutation point detection, trigeminal search tree, sliding window theory, time series data, online detection

中图分类号: 

  • TP311