电子科技 ›› 2020, Vol. 33 ›› Issue (9): 44-49.doi: 10.16180/j.cnki.issn1007-7820.2020.09.008

• • 上一篇    下一篇

基于多Agent强化学习的危险车辆预警算法

王泽学,万启东,秦杨梅,樊森清,肖泽仪   

  1. 四川大学 化学工程学院,四川 成都 610065
  • 收稿日期:2019-06-24 出版日期:2020-09-15 发布日期:2020-09-12
  • 作者简介:王泽学(1994-),男,硕士研究生。研究方向:本质安全。|肖泽仪(1960-),男,博士,教授,博士生导师。研究方向:过滤分离设备、化工安全、膜分离及材料等
  • 基金资助:
    四川省安全生产科技项目(Scaqjgstp 2016011)

Dangerous Vehicle Early Warning Algorithms Based on Multi-Agent Enhancement Learning

WANG Zexue,WAN Qidong,QIN Yangmei,FAN Senqing,XIAO Zeyi   

  1. School of Chemical Engineering,Sichuan University,Chengdu 610065,China
  • Received:2019-06-24 Online:2020-09-15 Published:2020-09-12
  • Supported by:
    Scientific and Technological Projects of Safety Production in Sichuan Province(Scaqjgstp 2016011)

摘要:

针对目前行人易受到车辆撞击,且缺乏主动保护手段的问题,文中设计了一个包括雷达等模块的智能可穿戴设备来保护行人免受车辆的冲击。在此基础上,提出了基于模糊综合评价的安全智能算法,从行人的角度出发,综合考虑将雷达探测的车辆数据、当地道路交通状况、天气、行人状态等多种影响因素作为评价指标。为提高算法的准确性和适应性,提出了基于BP神经网络和多Agent强化学习的方法赋予模糊综合评价的各指标动态权重。仿真验证结果显示,相较于AHP等取权重方法,该预警算法的警报准确率提高了55%以上;相较单Agent强化学习,该方法学习效率提高了近28倍,说明该智能穿戴设备可以对车辆撞击行人进行有效地预测和警告。

关键词: 多Agent强化学习, 危险车辆预警, 主动保护, 智能穿戴设备, 预警算法, 模糊综合评价

Abstract:

In view of the current problem that pedestrians are vulnerable to vehicle impact and lack of active protection means, an intelligent wearable device including radar module to protect pedestrians from vehicle impact is proposed in this study. On this basis, a safety intelligent algorithm based on fuzzy comprehensive evaluation is proposed. From the perspective of pedestrians, radar-detected vehicle data, local road traffic conditions, weather, pedestrian status and other factors are considered as evaluation indicators. In order to improve the accuracy and adaptability of the algorithm, a method based on BP neural network and multi-agent reinforcement learning is proposed to give dynamic weights to each index of fuzzy comprehensive evaluation. The simulation results shows that the alarm accuracy of the algorithm is more than 55% higher than that of the weighted method such as AHP, and the learning efficiency of the algorithm is nearly 28 times higher than that of the single agent reinforcement learning, which indicated that intelligent wearing equipment can effectively predict and warn the impact of vehicles on pedestrians.

Key words: multi-agent enhancement learning, dangerous vehicle early warning, active protection, intelligent wearing equipment, early warning algorithm, fuzzy comprehensive evaluation

中图分类号: 

  • TN957.52+4