[1] |
Barros P, Parisi G I, Weber C, et al. Emotion modulated attention improves expression recognition:a deep learning model[J]. Neurocomputing, 2017,253(8):104-114.
|
[2] |
谢林, 李菲菲, 陈虬. 基于稀疏自动编码机的场景识别算法[J]. 电子科技, 2019,32(1):38-41.
|
|
Xie Lin, Li Feifei, Chen Qiu. Scene Recognition algorithm based on sparse autoencoder[J]. Electronic Science and Technology, 2019,32(1):38-41.
|
[3] |
Koelstra S, Muhl C, Soleymani M, et al. DEAP: a database for emotion analysis using physiological signals[J]. IEEE Transactions on Affective Computing, 2012,3(1):18-31.
|
[4] |
Martinez H P, Bengio Y, Yannakakis G N. Learning deep physiological models of affect[J]. IEEE Computational Intelligence Magazine, 2013,8(2):20-33.
|
[5] |
温万惠. 基于生理信号的情感识别方法研究[D]. 重庆:西南大学, 2010.
|
|
Wen Wanhui. Research on emotion recognition methods based on physiological signals[D]. Chongqing:Southwest University, 2010.
|
[6] |
李志鹏. 情感脑电的通道选择与分类方法研究[D]. 哈尔滨:哈尔滨工业大学, 2017.
|
|
Li Zhipeng. Research on channel selection and emotion classification of EEG[D]. Harbin:Harbin Institute of Technology, 2017.
|
[7] |
Chen J, Hu B, Moore P, et al. Electroencephalogram -based emotion assessment system using ontology and data mining techniques[J]. Applied Soft Computing, 2015,30(5):663-674.
|
[8] |
Shi L C, Jiao Y Y, Lu B L. Differential entropy feature for EEG-based vigilance estimation[C]. Osaka:The Thirty-fifth Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2013.
|
[9] |
Duan R N, Zhu J Y, Lu B L. Differential entropy feature for EEG-based emotion classification[C]. San Diego:The Sixth International IEEE Engineering in Medicine and Biology Society Conference on Neural Engineering, 2013.
|
[10] |
Lin Y P, Yang Y H, Jung T P. Fusion of electroen- cephalogram dynamics and musical contents for estimating emotional responses in music listening[J]. Frontier in Neuroscience, 2014,8(94):33-35.
|
[11] |
Li X, Song D, Zhang P, et al. Emotion recognition from multi-channel EEG data through convolutional recurrent neural network[C]. Kansas City:IEEE International Conference on Bioinformatics and Biomedicine, 2017.
|
[12] |
Lo F, Li C, Wang J, et al. Continuous systolic and diastolic blood pressure estimation utilizing long short-term memory network[C]. Jeju:The Thirty-ninth IEEE Engineering in Medicine and Biology Society, 2017.
|
[13] |
Zhang J, Li S, Yin Z. Pattern classification of instantaneous mental workload using ensemble of convolutional neural networks[J]. International Federation of Automatic Control-Papers on Line, 2017,50(1):14896-14901.
|
[14] |
吴乃玉. 基于EEG 信号的情绪分类研究[D]. 北京:中央民族大学, 2013.
|
|
Wu Naiyu. EEG-based emotion classification research[D]. Beijing:Minzu University of China, 2013.
|
[15] |
Posner J, Russell J A, Peterson B S. The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology[J]. Development and Psychopathology, 2005,17(3):715-734.
doi: 10.1017/S0954579405050340
pmid: 16262989
|
[16] |
Petrantonakis P C, Hadjileontiadis L J. Emotion recognition from EEG using higher order crossings[J]. IEEE Transactions on Information Technology in Biomedicine, 2010,14(2):186-197.
pmid: 19858033
|
[17] |
Zheng W L, Zhu J Y, Lu B L. Identifying stable patterns over time for emotion recognition from EEG[J]. IEEE Transactions on Affective Computing, 2016,7(99):1-15.
|
[18] |
Li J, Zhang Z, He H. Implementation of EEG emotion recognition system based on hierarchical convolutional neural networks[C]. Beijing:The Eighth International Conference on Brain Inspired Cognitive Systems, 2016.
|
[19] |
Zheng W L, Guo H T, Lu B L. Revealing critical channels and frequency bands for emotion recognition from EEG with deep belief network[C]. Paris:The Seventh International IEEE Engineering in Medicine and Biology Society Conference on Neural Engineering, 2015.
|
[20] |
魏琛, 陈兰岚, 张傲. 基于集成卷积神经网络的脑电情感识别[J]. 华东理工大学学报(自然科学版), 2018,45(1):125-132.
|
|
Wei Chen, Chen Lanlan, Zhang Ao. Emotion recognition of EEG based on ensemble convolutional neural networks[J]. Journal of East China University of Science and Technology, 2018,45(1):125-132.
|