[1] |
黄成都, 黄文广, 闫斌. 基于Codebook 背景建模的视频行人检测[J]. 传感器与微系统, 2017,36(3):144-146.
|
|
Huang Chengdu, Huang Wenguang, Yan Bin. Pedestrian detection based on Codebook background modeling in video[J]. Transducer and Microsystem Technologies, 2017,36(3):144-146.
|
[2] |
高修祥, 瞿成明. 基于HOG与残差网络的行人检测算法[J]. 黑龙江工业学院学报(综合版), 2019,19(4):72-77.
|
|
Gao Xiuxiang, Zhuo Chengming. Pedestrian detection algorithm based on HOG and residual network[J]. Journal of Heilongjiang University of Technology(Comprehensive Edition), 2019,19(4):72-77.
|
[3] |
刘燕德, 曾体伟, 陈洞滨, 等. 一种级联两阶段分类的行人检测方法[J]. 电子测量技术, 2018,41(19):1-6.
|
|
Liu Yande, Zeng Tiwei, Chen Dongbin, et al. Pedestrian detection based on cascade two stage classification[J]. Electronic Measurement Technology, 2018,41(19):1-6.
|
[4] |
张亚须, 龙晖, 云利军. 基于改进DPM模型的行人检测方法研究[J]. 大理大学学报, 2018,3(6):13-18.
|
|
Zhang Yaxu, Long Hui, Yun Lijun. Research on pedestrian detection method based on improved DPM model[J]. Journal of Dali University, 2018,3(6):13-18.
|
[5] |
高华, 邬春学, 鲁俊. 基于动态加权可变形部件模型的行人检测[J]. 电子科技, 2016,29(9):1-3.
|
|
Gao Hua, Wu Chunxue, Lu Jun. Pedestrian detection based on deformable part model with dynamic weights adjustment[J]. Electronic Science and Technology, 2016,29(9):1-3.
|
[6] |
Girshick R. Fast R-CNN[C]. Santiago:IEEE International Conference on Computer Vision, 2015.
|
[7] |
Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015,39(6):1137-1145.
|
[8] |
龚静, 曹立, 亓琳, 等. 基于YOLOv2算法的运动车辆目标检测方法研究[J]. 电子科技, 2018,31(6):5-8,12.
|
|
Gong Jing, Cao Li, Qi Lin, et al. Moving vehicle target detection based on YOLOv2 algorithm[J]. Electronic Science and Technology, 2018,31(6):5-8,12.
|
[9] |
Redmon J, Farhadi A. YOLOv3:an incremental improvement[C]. Wellington:IEEE Conference on Computer Vision and Pattern Recognition, 2018.
|
[10] |
王文豪, 高利, 吴绍斌, 等. 行人检测综述[J]. 摩托车技术, 2019(1):29-32.
|
|
Wang Wenhao, Gao Li, Wu Shaobin, et al. Review of pedestrian detection[J]. Motorcycle Technology, 2019(1):29-32.
|
[11] |
Rezatofighi H, Tsoi N, Gwak J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]. Long Beach:IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019.
|
[12] |
Huang G, Liu Z, Weinberger K Q, et al. Densely connected convolutional networks[C]. Las Vegas:IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[13] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas:IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[14] |
Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015,39(6):1137-1149.
|
[15] |
Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]. Las Vegas:IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[16] |
Wang H B, Zhang Z D. Text detection algorithm based on improved YOLOv3[C]. Beijing:IEEE the Ninth International Conference on Electronics Information and Emergency Communication, 2019.
|