电子科技 ›› 2021, Vol. 34 ›› Issue (3): 28-36.doi: 10.16180/j.cnki.issn1007-7820.2021.03.006

• • 上一篇    下一篇

辅助虚拟现实数据手套及电刺激力触觉增强反馈电路系统设计

李兆基1,王海鹏1,2,阮伟华1,黄书豪1   

  1. 1.三江学院 电子信息工程学院,江苏 南京 210012
    2.东南大学 射频与光电集成电路研究所,江苏 南京 210096
  • 收稿日期:2019-12-04 出版日期:2021-03-15 发布日期:2021-03-10
  • 作者简介:李兆基(1996-),男,工程师。研究方向:功能性电刺激与虚拟现实辅助康复。|王海鹏(1987-),男,博士,讲师。研究方向:瘫痪肢体运动功能重建。
  • 基金资助:
    国家自然科学基金(61801262);江苏省高等学校自然科学研究项目(18KJB510039)

Circuit and System Design for Assisting Virtual Reality with Data Glove and Electric Stimulation Tactile Enhancement Feedback

LI Zhaoji1,WANG Haipeng1,2,RUAN Weihua1,HUANG Shuhao1   

  1. 1. School of Electronic and Information Engineering,Sanjiang University,Nanjing 210012,China
    2. Institute of RF&OE-ICs, Southeast University,Nanjing 210096,China
  • Received:2019-12-04 Online:2021-03-15 Published:2021-03-10
  • Supported by:
    National Natural Science Foundation of China(61801262);The Natural Science Foundation of the Jiangsu Higher Education Institutions of China(18KJB510039)

摘要:

针对目前虚拟现实人机交互设备存在的精度低、体积大、可穿戴性差的缺点,文中以手势识别和虚拟现实人机交互为研究对象,提出并设计了一种新型用于辅助VR设备进行人机交互的原型系统。该系统包括由一组弯曲度传感器与九轴运动姿态传感器组成的手套和一个基于功能性电刺激腕带。数据手套系统具有对手部运动姿态数据的采集和FES力触觉增强的信息反馈功能。手套系统通过无线方式进行数据的传输,数据在计算机端的姿态程序算法中进行进一步的计算,计算结果用于对VR场景中构建的手部姿态进行实时控制。利用VR场景中的碰撞算法预测出手部在场景中碰撞物体产生的力触觉值,最后通过无线传输至FES刺激腕带产生不同等级的刺激脉冲辅助完成对手部力触觉控制,从而达到人机交互的效果。经过实际测试,5位健康志愿者单根手指的平均识别精度为94.7%±1.3%。设计采用的FES刺激腕带可以提供0~30 mA的电流输出和最大扭矩达到1.8 N·m的腕关节力量控制,动作延迟时间为20 ms。

关键词: 手势识别, 虚拟现实, 功能性电刺激, 数据手套, 康复, 力触觉增强反馈

Abstract:

In view of the shortcomings of low accuracy, large size, and poor wearability of current virtual reality human-machine interaction devices, this study proposes a new type of assisted VR device for gesture recognition and virtual reality human-machine interaction. The system includes a glove consisting of a set of flex sensors and a nine-axis motion attitude sensor, and a wrist strap based on functional electrical stimulation. The data glove system transmits the data through wireless communication and these data is calculated in the attitude program algorithm on the computer. The results are used to control the hand posture constructed in VR scene in real time. The collision algorithm in the VR scene is adaopted to predict the force haptic value generated by the hand colliding with the object in the scene. Finally, the wireless transmission to the FES stimulation wristband generates different levels of stimulation pulses to assist in completing the force and tactile control of the hand, thereby achieving the effect of human-computer interaction. The measured experimental results show that the average recognition accuracy of a single finger of 5 healthy volunteers is 94.7%±1.3%. The FES wristband can provide a current output of 0~30 mA and a wrist joint strength control with a maximum torque of 1.8 N·m, and the action delay time is 20 ms.

Key words: gesture recognition, virtual reality, functional electrical stimulation, data glove, rehabilitation, tactile enhancement feedback

中图分类号: 

  • TN911.7