[1] |
刘国锐. 基于双目立体视觉的三维重建系统研究[D]. 长春:长春工业大学, 2016.
|
|
Liu Guorui. Research on three dimensional reconstruction system based on binocular vision[D]. Changchun:Changchun University of Technology, 2016.
|
[2] |
黄经州. 高分辨率近似纹理图像立体匹配技术研究[D]. 杭州:浙江大学, 2015.
|
|
Huang Jingzhou. Stereo matching of high- resolution images with similar texture[D]. Hangzhou:Zhejiang University, 2015.
|
[3] |
庞星. 双目立体匹配的理论研究及算法优化[D]. 南京:南京理工大学, 2015.
|
|
Pang Xing. Theoretical research and algorithm optimization of binocular stereo matching[D]. Nanjing:Nanjing University of Science and Technology, 2015.
|
[4] |
李小林, 李文国, 李浩. 基于视差与灰度双层支持窗的立体匹配算法[J]. 电子科技, 2019, 32(11):12-27.
|
|
Li Xiaolin, Li Wenguo, Li Hao. A stereo matching using double layer support windows based on RGB map and disparity map[J]. Electronic Science and Technology, 2019, 32(11):12-27.
|
[5] |
郭龙源, 罗百通, 欧先锋, 等. 自适应窗口和半全局立体匹配算法研究[J]. 成都工业学院学报, 2017, 20(1):7-15.
|
|
Guo Longyuan, Luo Baitong, Ou Xianfeng, et al. Adaptive windows and semi-global stereo matching algorithm[J]. Journal of Chengdu Technological University, 2017, 20(1):7-15.
|
[6] |
Zbontar J, Lecun Y. Stereo matching by training a convolutional neural network to compare image patches[J]. The Journal of Machine Learning Research, 2016, 17(1):2287-2318.
|
[7] |
Hirschmüller H. Semi-global matching-motivation, developments and applications[C]. Stuttgart:Photogrammetric Week, 2011.
|
[8] |
王云峰, 吴炜, 余小亮, 等. 基于自适应权重AD-Census变换的双目立体匹配[J]. 工程科学与技术, 2018, 50(4):153-160.
|
|
Wang Yunfeng, Wu Wei, Yu Xiaoliang, et al. A stereo matching system with the adaptive weight AD-census[J]. Advanced Engineering Sciences, 2018, 50(4):153-160.
|
[9] |
吕鹏程, 厉小润. 基于AD-census和多权值的自适应窗口的立体匹配算法[J]. 工业控制计算机, 2018, 31(3):49-52.
|
|
Lü Pengcheng, Li Xiaorun. Stereo matching algorithm based on AD-census and multi- weight adaptive window[J]. Industrial Control Computer, 2018, 31(3):49-52.
|
[10] |
Luo W J, Schwing A G, Urtasun R. Efficient deep learning for stereo matching[C]. San Francisco:The IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[11] |
Achanta R, Susstrunk S. Superpixels and polygons using simple non-iterative clustering[C]. San Francisco:The IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[12] |
王春瑶, 陈俊周, 李炜. 超像素分割算法研究综述[J]. 计算机应用研究, 2014, 31(1):6-12.
|
|
Wang Chunyao, Chen Junzhou, Li Wei. Review on superpixel segmentation algorithms[J]. Application Research of Computers, 2014, 31(1):6-12.
|
[13] |
Kim S, Min D B, Kim S, et al. Feature augmentation for learning confidence measure in stereo matching[J]. IEEE Transactions on Image Processing, 2017, 26(12):6019-6033.
doi: 10.1109/TIP.2017.2750404
|
[14] |
郭倩, 张福杨, 孙农亮. 融合多特征表示和超像素优化的双目立体匹配[J]. 计算机工程与应用, 2020, 56(1):216-223.
|
|
Guo Qian, Zhang Fuyang, Sun Nongliang. Binocular stereo matching with multi-feature representation and super-pixel optimization[J]. Computer Engineering and Applications, 2020, 56(1):216-223.
|
[15] |
王旭初, 刘辉煌, 牛彦敏. 融合多尺度局部特征与深度特征的双目立体匹配[J]. 光学学报, 2020, 40(2):119-131.
|
|
Wang Xuchu, Liu Huihuang, Niu Yanmin. Binocular stereo matching by combining multiscale local and deep features[J]. Acta Optica Sinica, 2020, 40(2):119-131.
|
[16] |
Scharstein D, Szeliski R, Hirschmüuer H. Middlebury stereo benchmark[EB/OL].(2017-05-17)[2020-01-15]http://vision.middlebury.edu/stereo.
|
[17] |
Vieira G D S, Soares F A A, De Lima J C, et al. A disparity computation framework[C]. Milwaukee:IEEE the Forty-third Annual Computer Software and Applications Conference, 2019.
|
[18] |
Yu L D, Wang Y C, Wu Y W, et al. Deep stereo matching with explicit cost aggregation sub-architecture[C]. New Orleans:The Thirty-second AAAI Conference on Artificial Intelligence, 2018.
|
[19] |
钱超, 张晓林. 基于稳定特竹点和SLIC超像素分割的快速立体匹配[J]. 电子设计工程, 2016, 24(23):146-148.
|
|
Qian Chao, Zhang Xiaolin. Fast stereo matching algorithm based on steady features and SLIC superpixels[J]. Electronic Design Engineering, 2016, 24(23):146-148.
|