电子科技 ›› 2021, Vol. 34 ›› Issue (9): 73-78.doi: 10.16180/j.cnki.issn1007-7820.2021.09.013

• • 上一篇    

基于超像素分割的孪生网络双目立体匹配方法研究

陆玮,刘翔,薛冕   

  1. 上海工程技术大学 电子电气工程学院,上海 201600
  • 收稿日期:2020-05-24 出版日期:2021-09-15 发布日期:2021-09-08
  • 作者简介:陆玮(1985-),男,硕士研究生。研究方向:计算机视觉。|刘翔(1972-),男,博士,副教授。研究方向:计算机视觉。
  • 基金资助:
    上海市自然科学基金(19ZR1421500)

Siamese Network Binocular Stereo Matching Based on Super-Pixel Segmentation

LU Wei,LIU Xiang,XUE Mian   

  1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201600,China
  • Received:2020-05-24 Online:2021-09-15 Published:2021-09-08
  • Supported by:
    Shanghai Natural Science Foundation(19ZR1421500)

摘要:

图像若存在纹理缺乏、遮挡、边缘深度不连续等情况,其双目匹配精度会降低。针对这一问题,文中将经过均值滤波预处理和SLIC超像素分割形成的超像素区域作为Siamese孪生深度学习网络模型的输入,进行了图像局部信息匹配代价计算。该方法有效提升了视差计算时边缘区域的辨识度,避免了视差图边缘膨胀、模糊、不连续等问题,提高了立体匹配的准确度。实验部分基于Middlebury 立体视觉数据集测试平台,并与SGM半全局匹配、自适应权重AD-Census等方法得出的视差图进行比较。结果显示,该算法在深度不连续区域和缺乏纹理区域的匹配效果改善较为明显,且平均视差误差和平均错误率均有所降低,具有更好的鲁棒性。

关键词: 双目视觉, 超像素分割, SLIC算法, 立体匹配, 孪生网络, SGM算法, AD-Census算法, Middlebury数据集

Abstract:

In view of the low accuracy problem in binocular stereo matching caused by image texture lacking, occlusion and depth discontinuous, this study proposes the matching cost calculation of local image features based on deep learning Siamese neural network model which takes mean filter preprocessing and SLIC super-pixel segmentation as input. The method effectively improves the accuracy of edge regional identification when disparity computation happens, and avoids the problems of edge expansion, blur and discontinuity, and thus improving the accuracy of stereo matching. The experiments are based on the Middlebury stereovision data set test platform, and compared with the disparity maps obtained by SGM, adaptive weight AD-Census and other possible methods. The results show that the algorithm has a significant improvement in the matching effect of the depth discontinuous area and the lack of texture area, and the average parallax error and average error rate are reduced, indicating that the proposed method has better robustness.

Key words: binocular vision, super pixel segmentation, SLIC algorithm, stereo matching, siamese neural network, SGM algorithm, AD-Census algorithm, Middlebury dataset

中图分类号: 

  • TP181