[1] |
付梦印, 吕宪伟, 刘彤, 等. 基于RGB-D数据的实时SLAM算法[J]. 机器人, 2015, 37(6):683-692.
|
|
Fu Mengyin, Lü Xianwei, Liu Tong, et al. Real-time SLAM algorithm based on RGB-D data[J]. Robot, 2015, 37(6):683-692.
|
[2] |
Teng C H, Chuo K Y, Hsieh C Y. Reconstructing three-dimensional models of objects using a kinect sensor[J]. The Visual Computer, 2018, 34(11):1507-1523.
doi: 10.1007/s00371-017-1425-2
|
[3] |
张志华, 刘政怡. 多角度融合的RGB-D显著检测[J]. 计算机工程与科学, 2018, 40(4):681-689.
|
|
Zhang Zhihua, Liu Zhengyi. RGB-D saliency detection based on multiple perspectives fusion[J]. Computer Engineering and Science, 2018, 40(4):681-689.
|
[4] |
Husian F, Schulz H, Dellen B, et al. Combiningsemanticand geometric features for object class segmentation of indoor scenes[J]. IEEE Robotics and Automation Letters, 2016, 2(1):49-55.
doi: 10.1109/LRA.2016.2532927
|
[5] |
郑欢. 基于Kinect的深度图像修复技术研究[D]. 西安:陕西师范大学, 2016.
|
|
Zheng Huan. Research on depth image inpainting technology based on kinect[D].Xi'an: Shaanxi Normal University, 2016.
|
[6] |
秦兴, 高晓琪, 陈滨. 基于压缩卷积神经网络的图像超分辨率算法[J]. 电子科技, 2020, 33(5):1-8.
|
|
Qin Xing, Gao Xiaoqi, Chen Bin. Image super-resolution algorithm based on squeezenet convolution neural network[J]. Electronic Science and Technology, 2020, 33(5):1-8.
|
[7] |
Daribo I, Tillier C, Pesquet-Popescu B. Distance dependent depth filtering in 3D warping for 3DTV[C]. Chania:Proceeding of the IEEE Ninth Workshop on Multimedia Signal Processing, 2007.
|
[8] |
Feng S, Murray-Smith R, Ramsay A. Position stabilisation and lag reduction with gaussian processes in sensor fusion system for user performance improvement[J]. International Journal of Machine Learning & Cybernetics, 2017, 8(4):1167-1184.
|
[9] |
雷超阳, 刘军华, 张敏. 一种基于自适应的新型中值滤波算法[J]. 计算机工程与应用, 2008, 44(12):60-62.
|
|
Lei Chaoyang, Liu Junhua, Zhang Min. New median filter algorithm based on adaptive[J]. Computer Engineering and Applications, 2008, 44(12):60-62.
|
[10] |
Newcombe R A, Izadi S, Hilliges O, et al. KinectFusion: Real-time dense surface mapping and tracking[C]. Piscataway:Proceeding of the Tenth IEEE International Symposium on Mixed & Augmented Reality, 2012.
|
[11] |
Du H, Miao Z. Kinect depth maps preprocessing based on RGB-D data clustering and bilateral filtering[C]. Wuhan:Proceeding of the 2015 Chinese Automation Congress IEEE, 2015.
|
[12] |
Lin Y. The design of image depth information extraction algorithm based on joint bilateral filtering[J]. Journal of Physics: Conference Series, 2019, 1187(4):1-10.
|
[13] |
Khoshelham K, Elberink S O. Accuracy and resolution of kinect depth data for indoor mapping applications[J]. Sensors, 2012, 12(2):1437-1454.
doi: 10.3390/s120201437
pmid: 22438718
|
[14] |
李少敏, 张倩, 王沛, 等. 基于高斯混合模型的Kinect深度图像增强算法[J]. 上海师范大学学报(自然科学版), 2016, 45(1):28-33.
|
|
Li Shaomin, Zhang Qian, Wang Pei, et al. Kinect sensor's depth image enhancement based on Gaussian mixture model[J]. Journal of Shanghai Normal University(Natural Science Edition), 2016, 45(1):28-33.
|
[15] |
Zhang X L, Dai L Q. Fast bilateral filtering[J]. Electronics Letters, 2019, 55(5):258-260.
doi: 10.1049/ell2.v55.5
|
[16] |
Yoshizawa S, Belyaev A, Yokota H. Fast gauss bilateral filtering[J]. Computer Graphics Forum, 2010, 29(1):60-74.
doi: 10.1111/cgf.2010.29.issue-1
|
[17] |
Handa A, Whelan T, McDonald J, et al. A benchmark for RGB-D visual odometry,3D recons-truction and SLAM[C]. Hong Kong:Proceeding of the IEEE International Conference on Robotics and Automation, 2014.
|
[18] |
周自顾, 曹杰, 郝群, 等. 保留边界特征的深度图像增强算法研究[J]. 应用光学, 2018, 39(2):200-206.
|
|
Zhou Zigu, Cao Jie, Hao Qun, et al. Depth image enhancement algorithm for preserving boundary[J]. Journal of Applied Optics, 2018, 39(2):200-206.
|
[19] |
王鸿闯, 胡晓辉, 李薇. 一种基于改进阈值函Contourlet域的图像去噪算法[J]. 电子科技, 2019, 32(4):44-48.
|
|
Wang Hongchuang, Hu Xiaohui, Li Wei. An image denoising algorithm based on improved threshold function Contourlet domain[J]. Electronic Science and Technology, 2019, 32(4):44-48.
|