电子科技 ›› 2021, Vol. 34 ›› Issue (11): 31-36.doi: 10.16180/j.cnki.issn1007-7820.2021.11.005

• • 上一篇    下一篇

深度图像预处理算法研究

吴海波,王晨,崔禹   

  1. 昆明理工大学 机电工程学院,云南 昆明 650500
  • 收稿日期:2020-07-09 出版日期:2021-11-15 发布日期:2021-11-16
  • 作者简介:吴海波(1975-),男,副教授。研究方向:机器人理论与应用。|王晨(1996-),女,硕士研究生。研究方向:室内移动机器人视觉定位与建图。
  • 基金资助:
    国家重点研发计划(2017YFC1702503)

Research on Depth Image Preprocessing Algorithm

WU Haibo,WANG Chen,CUI Yu   

  1. Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650500,China
  • Received:2020-07-09 Online:2021-11-15 Published:2021-11-16
  • Supported by:
    National Key R&D Program of China(2017YFC1702503)

摘要:

为了解决RGB-D相机获取的原始深度图像数据包含噪声和空洞的问题,文中提出一种基于彩色图像引导的深度图像滤波算法。该算法基于双边滤波原理,以彩色图像作为引导图,将彩色图像灰度化后的灰度像素变化权值与高斯滤波权值相乘得到滤波综合权值,然后利用高斯核函数的分离特性,通过快速高斯变换降低计算的复杂度,提高算法的运行速度。实验结果表明,该算法在对原始深度图像进行滤波后,可显著提高深度图去噪效果,在保持双边滤波器去噪保边优点的同时,能对深度图像的小面积空洞区域进行修复,缩短运行时间。

关键词: RGB-D, 深度图像, 噪声, 空洞, 双边滤波器, 快速高斯变换, 去噪保边

Abstract:

In order to solve the problem that the original depth image data acquired by RGB-D camera contains noise and holes, a depth image filtering algorithm based on color image guidance is proposed in this study. The proposed algorithm is based on the principle of bilateral filtering. First, the color image is used as a guide map, and the gray pixel change weight of the color image is multiplied by the Gaussian filter weight to obtain the comprehensive filter weight. Then, the algorithm uses the separation characteristic of the Gaussian kernel function to reduce the computational complexity and improve the running speed of the algorithm through fast Gaussian transformation. Experimental results show that after filtering the original depth image, the algorithm can significantly improve the denoising effect of depth image. Additionally, the algorithm can repair the small-area void area of the depth image while maintaining the advantages of bilateral filter denoising and edge preservation, and shorten the running time.

Key words: RGB-D, depth image, noise, holes, bilateral filtering, fast Gaussian transformation, de-noising and edge preserving

中图分类号: 

  • TN911.73