[1] |
Puértolas B, Hill A K, García T, et al. In-situ synthesis of hydrogen peroxide in tandem with selective oxidation reactions: A mini-review[J]. Catalysis Today, 2015, 248(25):115-127.
doi: 10.1016/j.cattod.2014.03.054
|
[2] |
Yi Y, Wang L, Li G, et al. A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: Noble-metal catalytic method, fuel-cell method and plasma method[J]. Catalysis Science & Technology, 2016, 6(6):1593-1610.
|
[3] |
Campos-Martin J M, Blanco-Brieva G, Fierro J L G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process[J]. Angew Chemistry International Edition of England, 2006, 45(42):6962-6984.
|
[4] |
Jiang Y, Ni P, Chen C, et al. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry[J]. Advanced Energy Materials, 2018, 8(31):1614-6832.
|
[5] |
Yamanaka I, Onizawa T, Takenaka S, et al. Direct and continuous production of hydrogen peroxide with 93% selectivity using a fuel-cell system[J]. Angewandte Chemise, 2003, 115(31):3781-3783.
|
[6] |
Mounfield III W P, Garg A, Shao-Horn Y, et al. Electrochemical oxygen reduction for the production of hydrogen peroxide[J]. Chemistry, 2018, 4(1):18-19.
doi: 10.3390/chemistry4010002
|
[7] |
Guo X, Lin S, Gu J, et al. Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: The power of single-atom catalysts[J]. ACS Catalysis, 2019, 9(12):11042-11054.
doi: 10.1021/acscatal.9b02778
|
[8] |
Su J, Ge R, Dong Y, et al. Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion[J]. Journal of Materials Chemistry A, 2018, 6(29):14025-14042.
doi: 10.1039/C8TA04064H
|
[9] |
Gan G, Li X, Wang L, et al. Active sites in single-atom Fe-Nx-C nanosheets for selective electrochemical dechlorination of 1,2-Dichloroethane to ethylene[J]. ACS Nano, 2020, 14(8):9929-9937.
doi: 10.1021/acsnano.0c02783
|
[10] |
Huang K, Zhang L, Xu T, et al. -60 °C solution synthesis of atomically dispersed cobalt electrocatalyst with superior performance[J]. Nature Communications, 2019, 10(1):1-10.
doi: 10.1038/s41467-018-07882-8
|
[11] |
Zhang L, Han L, Liu H, et al. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media[J]. Angewandte Chemise International Edition in English, 2017, 56(44):13694-13698.
|
[12] |
Zhang J, Liu J, Xi L, et al. Single-atom Au/NiFe layered double hydroxide electrocatalyst:Probing the origin of activity for oxygen evolution reaction[J]. Journal of the America Chemistry Society, 2018, 140(11):3876-3879.
doi: 10.1021/jacs.8b00752
|
[13] |
Yang S, Verdaguer-Casadevall A, Arnarson L, et al. Toward the decentralized electrochemical production of H2O2-a focus on the catalysis[J]. ACS Catalysis, 2018, 8(5):4064-4081.
doi: 10.1021/acscatal.8b00217
|
[14] |
Kim H W, Ross M B, Kornienko N, et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts[J]. Nature Catalysis, 2018, 1(4):282-290.
doi: 10.1038/s41929-018-0044-2
|
[15] |
Viswanathan V, Hansen H A, Rossmeisl J, et al. Unifying the 2e (-) and 4e (-) reduction of oxygen on metal surfaces[J]. Journal of Physics Chemistry Letter, 2012, 3(20):2948-2951.
|
[16] |
Jirkovsky J S, Panas I, Ahlberg E, et al. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production[J]. Journal of the America Chemistry Society, 2011, 133(48):19432-19441.
doi: 10.1021/ja206477z
|
[17] |
Zhang J, Yang H, Liu B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: A review[J]. Advanced Energy Materials, 2020, 3(11):1614-6832.
doi: 10.1002/aenm.201300272
|
[18] |
Chen Z, Gong W, Liu Z, et al. Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity[J]. Nano Energy, 2019, 60(42):394-403.
doi: 10.1016/j.nanoen.2019.03.045
|
[19] |
Wang X, Li Z, Qu Y, et al. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design[J]. Chemistry, 2019, 5(6):1486-1511.
|
[20] |
Gao J, Yang H, Huang X, et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst[J]. Chemistry, 2020, 6 (3):658-674.
|
[21] |
Chen M, He Y, Spendelow J S, et al. Atomically dispersed metal catalysts for oxygen reduction[J]. ACS Energy Letters, 2019, 4(7):1619-1633.
doi: 10.1021/acsenergylett.9b00804
|
[22] |
Sun K, Xu W, Lin X, et al. Electrochemical oxygen reduction to hydrogen peroxide via a two-electron transfer pathway on carbon-based single-atom catalysts[J]. Advanced Materials Interfaces, 2020, 8(8):2196-7350.
|
[23] |
Chen P, Zhang N, Zhou T, et al. Tailoring electronic structure of atomically dispersed metal-N3S1 active sites for highly efficient oxygen reduction catalysis[J]. ACS Materials Letters, 2019, 1(1):139-146.
doi: 10.1021/acsmaterialslett.9b00094
|
[24] |
Zhang J, Zhao Y, Chen C, et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions[J]. Journal of the America Chemistry Society, 2019, 141(51):20118-20126.
doi: 10.1021/jacs.9b09352
|
[25] |
Xiang W, Zhao Y, Jiang Z, et al. Palladium single atoms supported by interwoven carbon nanotube and manganese oxide nanowire networks for enhanced electrocatalysis[J]. Journal of Materials Chemistry A, 2018, 46(6):23366-23377.
|
[26] |
Jiang K, Back S, Akey A J, et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination[J]. Nature Communications, 2019, 10(1):1-11.
doi: 10.1038/s41467-018-07882-8
|
[27] |
Song X, Li N, Zhang H, et al. Graphene-supported single nickel atom catalyst for highly selective and efficient hydrogen peroxide production[J]. ACS Applied Materials and Interfaces, 2020, 12(15):17519-17527.
doi: 10.1021/acsami.0c01278
|
[28] |
Choi C H, Kim M, Kwon H C, et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst[J]. Nature Communications, 2016, 7(7):1-9.
|
[29] |
Ledendecker M, Pizzutilo E, Malta G, et al. Isolated Pd sites as selective catalysts for electrochemical and direct hydrogen peroxide synthesis[J]. ACS Catalysis, 2020, 10(10):5928-5938.
doi: 10.1021/acscatal.0c01305
|
[30] |
Wang Y, Shi R, Shang L, et al. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell[J]. Angewandte Chemie International Edition, 2020, 59(31):13057-13062.
doi: 10.1002/anie.202004841
|
[31] |
Tang C, Jiao Y, Shi B, et al. Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts[J]. Angewandte Chemie International Edition, 2020, 59(23):9171-9176.
doi: 10.1002/anie.202003842
|
[32] |
Hooe S L, Machan C W. Dioxygen reduction to hydrogen peroxide by a molecular Mn complex: Mechanistic divergence between homogeneous and heterogeneous reductants[J]. Journal of the America Chemistry Society, 2019, 141(10):4379-4387.
doi: 10.1021/jacs.8b13373
|
[33] |
Wang Y H, Goldsmith Z K, Schneider P E, et al. Kinetic and mechanistic characterization of low-overpotential, H2O2-selective reduction of O2 catalyzed by N2O2-ligated cobalt complexes[J]. Journal of the America Chemistry Society, 2018, 140(34):10890-10899.
doi: 10.1021/jacs.8b06394
|
[34] |
Jung E, Shin H, Lee B H, et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2production[J]. Nature Materials, 2020,19(4):436-442.
|
[35] |
Lu Z, Chen G, Siahrostami S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J]. Nature Catalysis, 2018, 1(2):156-162.
doi: 10.1038/s41929-017-0017-x
|
[36] |
Yin X P, Wang H J, Tang S F, et al. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition, 2018, 57(30):9382-9386.
doi: 10.1002/anie.201804817
|
[37] |
Khataee A, Sajjadi S, Pouran S R, et al. A comparative study on electrogeneration of hydrogen peroxide through oxygen reduction over various plasma-treated graphite electrodes[J]. Electrochimica Acta, 2017, 244(13):38-46.
doi: 10.1016/j.electacta.2017.05.069
|
[38] |
Li B Q, Zhao C X, Liu J N, et al. Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic Co-Nx-C sites and oxygen functional groups in noble-metal-free electrocatalysts[J]. Advanced Materials, 2019, 31(35):935-964.
|
[39] |
Su M, Chung M W, Han M H. Selective H2O2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts[J]. Catalysis Today, 2021, 359(5):99-105.
doi: 10.1016/j.cattod.2019.05.034
|
[40] |
Kattel S, Wang G. Reaction pathway for oxygen reduction on FeN4 embedded graphene[J]. Journal of Physics Chemistry Letters, 2014, 5(3):452-456.
doi: 10.1021/jz402717r
|