[1] |
Kushwaha R, Singh B, Khadkikar V. An improved PQ Zeta converter with reduced switch voltage stress for electric vehicle battery charger[C]. Detroit: Proceeding of IEEE Energy Conversion Congress and Exposition, 2020.
|
[2] |
杨彬. 基于Zeta的多电平逆变器研究[D]. 秦皇岛: 燕山大学, 2017.
|
|
Yang Bin. Research On multi-level inverter based on Zeta[D]. Qinhuangdao: Yanshan University, 2017.
|
[3] |
朱欢. 可逆 Sepic-Zeta 变换器研究[D]. 秦皇岛: 燕山大学, 2016.
|
|
Zhu Huan. Reversible Sepic-Zeta converter reserch[D]. Qinhuangdao: Yanshan University, 2016.
|
[4] |
王立乔, 李占一, 杨彬. 一种新型无电解电容的单级 Zeta逆变器[J]. 中国电机工程学报, 2019, 39(14):4221-4231.
|
|
Wang Liqiao, Li Zhanyi, Yang Bin. A novel single-stage Zeta inverter with non-electrolytic capacitor[J]. Proceedings of the CSEE, 2019, 39(14):4221-4231.
|
[5] |
徐靖为. 组合式 Zeta 变换器集成磁件的研究[D]. 阜新: 辽宁工程技术大学, 2018.
|
|
Xu Jingwei. Research on integrated magnetic parts of a combined Zeta converter[D]. Fuxin: Liaoning Technical University, 2018.
|
[6] |
荣德生, 高妍, 张理, 等. 双输入磁集成开关电感Zeta变换器[J]. 电源学报, 2021, 19(4):195-202.
|
|
Rong Desheng, Gao Yan, Zhang Li, et al. Research on Zeta converter with double power input and magnetic integrated switch[J]. Journal of Power Supply, 2021, 19(4):195-202.
|
[7] |
韩少鹏. 磁集成高增益 Zeta 变换器的研究[D]. 阜新: 辽宁工程技术大学, 2019.
|
|
Han Shaopeng. Research on magnetically integrated high gain Zeta converter[D]. Fuxin: Liaoning Technical University, 2019.
|
[8] |
张泽池. 新型磁集成高增益 Zeta 变换器研究[D]. 阜新: 辽宁工程技术大学, 2018.
|
|
Zhang Zechi. A new magnetic integrated high gain Zeta converter research[D]. Fuxin: Liaoning Technical University, 2018.
|
[9] |
徐子衿. Zeta 斩波电路中的复杂行为研究[D]. 兰州: 兰州理工大学, 2017.
|
|
Xu Zijin. Study of complex behaviors in Zeta chopper[D]. Lanzhou: Lanzhou University of Technology, 2017.
|
[10] |
王树东, 徐子衿, 高翔, 等. 电压反馈型Zeta斩波电路的稳定性研究[J]. 兰州理工大学学报, 2018, 44(6):92-95.
|
|
Wang Shudong, Xu Zijin, Gao Xiang, et al. Study of stability of voltage-feedback-type Zeta chopping circuit[J]. Journal of Lanzhou University of Technology, 2018, 44(6): 92-95.
|
[11] |
尚永祥. Zeta 变换器的切换建模[J]. 科学技术与工程, 2019, 19(34):174-179.
|
|
Shang Yongxiang. Switching modeling of Zeta converter[J]. Science Technology and Engineering, 2019, 19(34):174-179.
|
[12] |
黄媛媛. 基于耦合电感的高增益Zeta式 DC-DC变换器的研究[D]. 马鞍山: 安徽工业大学, 2017.
|
|
Huang Yuanyuan. Research on high gain Zeta DC-DC converter based on coupled inductor[D]. Maanshan: Anhui University of Technology, 2017.
|
[13] |
张卫平. 开关变换器的建模与控制[M]. 北京: 中国电力出版社, 2006.
|
|
Zhang Weiping. Modeling and control of switching converter[M]. Beijing: China Electric Power Press, 2006.
|
[14] |
胡寿松. 自动控制理论[M]. 北京: 科学出版社, 2019.
|
|
Hu Shousong. Automatic control theory[M]. Beijing: Science Press, 2019.
|
[15] |
张卫平. 高频开关变换器的数字控制[M]. 北京: 机械工业出版社, 2017.
|
|
Zhang Weiping. Digital control of high-frequency switched-mode power converters[M]. Beijing: China Machine Press, 2017.
|
[16] |
周鹏飞, 钟再敏. 基于LM5175的Buck-Boost车用开关电源设计[J]. 电子科技, 2016, 29(2):129-133.
|
|
Zhou Pengfei, Zhong Zaimin. An automotive Buck-Boost type switching power supply based on LM5175[J]. Electronic Science and Technology, 2016, 29(2):129-133.
|
[17] |
辛杨立. 宽应用范围的BUCK变换器控制策略与电路研究[D]. 成都: 电子科技大学, 2019.
|
|
Xin Yangli. Research on control strategy and circuit of BUCK converter with wide application range[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
|
[18] |
江友华, 吴琦娜, 帅禄玮, 等. 基于布谷鸟算法的电子变压器输出端谐振参数优化[J]. 太阳能学报, 2021, 42(1):476-483.
|
|
Jiang Youhua, Wu Qina, Shuai Luwei, et al. Optimization for resonant parameters of output port of power electronic transformer based on cuckoo search algorithm[J]. Acta Energiae Solaris Sinica, 2021, 42(1):476-483.
|