电子科技 ›› 2023, Vol. 36 ›› Issue (8): 65-71.doi: 10.16180/j.cnki.issn1007-7820.2023.08.010
谢红星,路宏敏,刘亮,任永达,李敏,张嘉海
收稿日期:
2022-03-30
出版日期:
2023-08-15
发布日期:
2023-08-14
作者简介:
谢红星(1992-),男,硕士研究生。研究方向:功率放大器、射频电路、电磁场与电磁波。|路宏敏(1961-),男,博士,教授,博士生导师。研究方向:电磁场与微波技术、电磁兼容、环境科学。
基金资助:
XIE Hongxing,LU Hongmin,LIU Liang,REN Yongda,LI Min,ZHANG Jiahai
Received:
2022-03-30
Online:
2023-08-15
Published:
2023-08-14
Supported by:
摘要:
应用半导体技术的固态功率放大器具有体积小和稳定性高等优点,在很多微波应用中取代了传统的真空器件行波管。在所有类型半导体材料中,第三代半导体材料GaN(Gallium Nitride)因为具有宽禁带、高电子迁移率和高击穿电压等优势,被广泛应用于功率放大器。基于功率放大器的发展,文中阐述了固态功率放大器的发展历史,总结了GaN技术与其他半导体技术性能的比较,并着重介绍了应用GaN HEMT(GaN High Electron Mobility Transistor)技术的功率放大器。讨论了GaN HEMT功率放大器的各种类型,包括A类、B类、C类、D类和E类等,介绍了应用于GaN功率放大器的效率和线性度提高技术,包括Doherty功率放大器和包络跟踪技术,以及数字预失真技术等,并就相关技术做了总结和对比。
中图分类号:
谢红星,路宏敏,刘亮,任永达,李敏,张嘉海. 氮化镓固态功率放大器发展概述[J]. 电子科技, 2023, 36(8): 65-71.
XIE Hongxing,LU Hongmin,LIU Liang,REN Yongda,LI Min,ZHANG Jiahai. Overview of Gallium Nitride Solid State Power Amplifier Development[J]. Electronic Science and Technology, 2023, 36(8): 65-71.
表4
文献[41??????~48]中GaN DPA的性能"
文献 | 频率 /GHz | 饱和输出功 率/dBm | 漏极效率 /% | 功率附加效 率/% | 峰均功率比 /dBm | 调制方式 | 邻信道泄漏 抑制比/dBc | 栅极长度 /μm |
---|---|---|---|---|---|---|---|---|
[ | 1.65~2.75 | 44.5~46.3 | 46.0~62.0 | - | 7.5 | LTE | -45.0 | 0.40 |
[ | 1.70~2.60 | 44.9~46.3 | >45.0 | - | 6.5 | WCDMA | -50.0 | 0.40 |
[ | 1.70~2.80 | 44.0~44.5 | 50.0~55.0 | - | 6.5 | LTE | -47.8 | 0.25 |
[ | 1.50~2.40 | 43.1~44.4 | 45.3~53.6 | - | 6.7 | LTE | -45.6 | 0.40 |
[ | 2.00~19.00 | 5.5~12.3 | - | 22.0~49.0 | 9.5 | LTE | - | 0.10 |
[ | 9.57 | - | - | 32.0 | 11.4 | LTE | -33.0 | 0.15 |
[ | 1.50~3.80 | 43.4 | 63.0 | - | - | LTE | - | 0.40 |
[ | 2.35 | - | 46.1 | 40.1 | 11.0 | LTE | -38.8 | 0.40 |
[1] | 李建兵, 林鹏飞, 郝保良, 等. 微波功率放大器发展概述[J]. 强激光与粒子束, 2020, 32(7):70-77. |
Li Jianbing, Lin Pengfei, Hao Baoliang, et al. Overview of development of microwave power amplifiers[J]. High Power Laser and Particle Beams, 2020, 32(7):70-77. | |
[2] | Ratnaparkhi V, Hiwale A S. Review of GaN HEMT high power amplifiers for microwave applications[J]. International Journal of Advanced Science and Technology, 2020, 29(5):2166-2176. |
[3] | Browne J. TWTAs power satcom systems[J]. Microwaves & RF, 2012, 51(4):102-104. |
[4] | 杨飞. 星载高功率放大器“固态化”技术研究[C]. 上海: 2020年全国微波毫米波会议, 2020:367-370. |
Yang Fei. Research on “solid state” technology of spaceborn high power amplifier[C]. Shanghai: National Conference on Microwave and Mil-limeter Wave, 2020:367-370. | |
[5] | Eissa M H, Kissinger D. 4.5 A 13.5 dBm fully integrated 200-to-255 GHz power amplifier with a 4-way power combiner in SiGe:C BiCMOS[C]. San Francisco: IEEE International Solid-State Circuits Conference,IEEE, 2019:82-84. |
[6] |
Radisic V, Deal W R, Leong K M K H, et al. A 10-mW submillimeter-wave solid-state power-amplifier module[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(7):1903-1909.
doi: 10.1109/TMTT.2010.2050105 |
[7] |
Kallfass I, Pahl P, Massler H, et al. A 200 GHz monolithic integrated power amplifier in metamorphic HEMT technology[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(6):410-412.
doi: 10.1109/LMWC.7260 |
[8] |
Tessmann A, Kallfass I, Leuther A, et al. Metamorphic HEMT MMICs and modules for use in a high-bandwidth 210 GHz radar[J]. IEEE Journal of Solid-State Circuits, 2008, 43(10):2194-2205.
doi: 10.1109/JSSC.4 |
[9] | Razavi B. RF microelectronics[M]. New York: Prentice Hall, 2012:26-59. |
[10] | Yamanaka K, Shinjo S, Komatsuzaki Y, et al. Overview and prospects of high power amplifier technology trend for 5G and beyond 5G base stations[J]. IEICE Transactions on Electronics, 2021, 104(10):526-533. |
[11] |
Pengelly R S, Wood S M, Milligan J W, et al. A review of GaN on SiC high electron-mobility power transistors and MMICs[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(6):1764-1783.
doi: 10.1109/TMTT.2012.2187535 |
[12] |
Xu J J, Wu Y F, Keller S, et al. 1-8-GHz GaN-based power amplifier using flip-chip bonding[J]. IEEE Microwave and Guided Wave Letters, 1999, 9(7):277-279.
doi: 10.1109/75.774146 |
[13] | Meharry D E, Lender R J, Chu K, et al. Multi-watt wideband MMICs in GaN and GaAs[C]. Honolulu: International Microwave Symposium, 2007:631-634. |
[14] | Giofre R, Colantonio P, Gonzalez L, et al. Design realization and tests of a space-borne GaN solid state power amplifier for second generation Galileo navigation system[J]. IEEE Transactions on Aerospace & Electronic Systems, 2018, 54(5):2383-2396. |
[15] |
Fong A, Srisathapat J, Chin C, et al. Ku- and K-band high-efficiency GaN MMIC HPA chipset for satellite communications[J]. Electronics Letters, 2019, 55(7): 393-395.
doi: 10.1049/el.2018.7179 |
[16] | Margomenos A, Kurdoghlian A, Micovic M, et al. GaN technology for E, W and G-band applications[C]. La Jolla: IEEE Compound Semiconductor Integrated Circuit Symposium, 2014:978-981. |
[17] |
Khan M A, Kuznia J N, Hove J, et al. Observation of a two‐dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-AlGaN heterojunctions[J]. Applied Physics Letters, 1992, 60(24):3027-3029.
doi: 10.1063/1.106798 |
[18] |
Ambacher O, Smart J, Shealy J R, et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures[J]. Journal of Applied Physics, 1999, 85(6):3222-3233.
doi: 10.1063/1.369664 |
[19] | Bernardini F, Fiorentini V, Vanderbilt D. Spontaneous polarization and piezoelectric constants of III-V nitrides[J]. Physical Review B, 1997, 56(16):10024-10027. |
[20] | Arivazhagan L, Nirmal D, Godfrey D, et al. Improved RF and DC performance in AlGaN/GaN HEMT by P-type doping in GaN buffer for millimetre-wave applications[J]. AEU-International Journal of Electronics and Communications, 2019, 10(8):189-194. |
[21] | Fletcher A S A, Nirmal D. A survey of Gallium Nitride HEMT for RF and high power applications[J]. Superlattices & Microstructures, 2017, 10(9):519-537. |
[22] | Fletcher A S A, Nirmal D, Ajayan J, et al. Analysis of AlGaN/GaN HEMT using discrete field plate technique for high power and high frequency applications[J]. AEU-International Journal of Electronics and Communications, 2019, 9(9): 325-330. |
[23] | Jebalin B K, Rekh A S, Prajoon P, et al. Unique model of polarization engineered AlGaN/GaN based HEMTs for high power applications[J]. Superlattices & Microstructures, 2015, 7(8):210-223. |
[24] |
Jebalin B K, Rekh A S, Prajoon P, et al. The influence of high-k passivation layer on breakdown voltage of Schottky AlGaN/GaN HEMTs[J]. Microelectronics Journal, 2015, 46(12):1387-1391.
doi: 10.1016/j.mejo.2015.04.006 |
[25] |
Katz A, Franco M. GaN comes of age[J]. IEEE Microwave Magazine, 2010, 11(7):S24-S34.
doi: 10.1109/MMM.2010.938583 |
[26] |
Chandrasekar H, Uren M J, Casbon M A, et al. Quantifying temperature-dependent substrate loss in GaN-on-Si RF technology[J]. IEEE Transactions on Electron Devices, 2019, 66(4):1681-1687.
doi: 10.1109/TED.2019.2896156 |
[27] | Raja P V, Nallatamby J C, DasGupta N, et al. Trapping effects on AlGaN/GaN HEMT characteristics[J]. Solid-State Electronics, 2021, 17(6): 107929-107939. |
[28] |
Binari S C, Ikossi K, Roussos J A, et al. Trapping effects and microwave power performance in AlGaN/GaN HEMTs[J]. IEEE Transactions on Electron Devices, 2001, 48(3):465-471.
doi: 10.1109/16.906437 |
[29] | Mickanin W, Canfield P, Finchem E, et al. Frequency- dependent transients in GaAs MESFETs: Process, geometry and material effects[C]. San Diego: Proceedings of the Elventh Annual Gallium Arsenide Integrated Circuit Symposium, 1989:211-214. |
[30] | Yeats R, D'Avanzo D C, Chan K, et al. Gate slow transients in GaAs MESFETs-causes, cures, and impact on circuits[C]. San Francisco: International Electron Devices Meeting,IEEE, 1989:842-845. |
[31] | Huang J C, Jackson G, Shanfield S, et al. An AlGaAs /InGaAs pseudomorphic high electron mobility transistor (PHEMT) for X- and Ku-band power applications[C]. Boston: IEEE MTT-S International Microwave Symposium Digest, 1991:713-716. |
[32] |
Vetury R, Zhang N Q, Keller S, et al. The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs[J]. IEEE Transactions on Electron Devices, 2001, 48(3):560-566.
doi: 10.1109/16.906451 |
[33] | Mimis K, Morris K A, Mcgeehan J P. A 2GHz GaN Class-J power amplifier for base station applications[C]. Phoenix: IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications, 2011:5-8. |
[34] | Marian K Kazimierczuk. 射频功率放大器[M]. 孙玲,程加力,高建军,译. 北京: 清华大学出版社, 2016:23-78. |
Marian K Kazimierczuk. RF power amplifier[M]. Translated by SunLing, ChengJiali, GaoJianjun. Beijing: Tsinghua University Press, 2016:23-78. | |
[35] |
El-Hamamsy S A. Design of high-efficiency RF Class-D power amplifier[J]. IEEE Transactions on Power Electronics, 2002, 9(3):297-308.
doi: 10.1109/TPEL.63 |
[36] | Cripps S C. Rf power amplifier for wireless communications[M]. Boston: Artech House, 2014:15-56. |
[37] |
Doherty W H. A new high efficiency power amplifier for modulated waves[J]. Proceedings of the IRE, 1936, 24(9):1163-1182.
doi: 10.1109/JRPROC.1936.228468 |
[38] |
Lee H, Lim W, Bae J, et al. Highly efficient fully integrated GaN-HEMT doherty power amplifier based on compact load network[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(12):5203-5211.
doi: 10.1109/TMTT.2017.2765632 |
[39] |
Jee S, Lee J, Son J, et al. Asymmetric broadband doherty power amplifier using GaN MMIC for femto-cell base-station[J]. IEEE Transactions on Microwave Theory & Techniques, 2015, 63(9):2802-2810.
doi: 10.1109/TMTT.2015.2442973 |
[40] | Fadhel M Ghannouchi, Mohammad S Hashmi. 功率放大器设计中的负载牵引技术[M]. 陈鹏,羊恺,译. 北京: 国防工业出版社, 2018:36-45. |
Fadhel M.Ghannouchi, Mohammad S. Hashmi. Load-pull technology in power amplifier design[M]. Translated by ChenPeng, YangKai. Beijing: National Defense Industry Press, 2018:36-45. | |
[41] |
Chen X, Chen W, Ghannouchi F M, et al. A broadband doherty power amplifier based on continuous-mode technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(12):4505-4517.
doi: 10.1109/TMTT.2016.2623705 |
[42] |
Pang J, He S, Huang C, et al. A post-matching doherty power amplifier employing low-order impedance inverters for broadband applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(12):4061-4071.
doi: 10.1109/TMTT.2015.2495201 |
[43] |
Xia J, Yang M, Guo Y, et al. A broadband high-efficiency doherty power amplifier with integrated compensating reactance[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(7):2014-2024.
doi: 10.1109/TMTT.2016.2574861 |
[44] |
Barthwal A, Rawat K, Koul S. Bandwidth enhancement of three-stage doherty power amplifier using symmetric devices[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(8):2399-2410.
doi: 10.1109/TMTT.2015.2452255 |
[45] |
Wu H F, Liao X J, Lin Q, et al. A compact ultrabroadband stacked traveling-wave GaN on Si power amplifier[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(7):3306-3314.
doi: 10.1109/TMTT.2018.2828434 |
[46] | Grebennikov A. High-efficiency class-E power amplifier with shunt capacitance and shunt filter[J]. IEEE Transactions on Circuits & Systems I Regular Papers, 2016, 63(1):12-22. |
[47] |
Rubio J J M, Camarchia V, Pirola M, et al. Design of an 87% fractional bandwidth doherty power amplifier supported by a simplified bandwidth estimation method[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(3):1319-1327.
doi: 10.1109/TMTT.22 |
[48] |
Jouzdani M, Ebrahimi M M, Rawat K, et al. Envelope tracked pulse gate modulated GaN HEMT power amplifier for wireless transmitters[J]. IEEE Transactions on Circuits and Systems I Regular Papers, 2015, 62(2): 571-579.
doi: 10.1109/TCSI.2014.2362311 |
[49] | Choi G W, Kim H J, Hwang W J, et al. High efficiency class-E tuned Doherty amplifier using GaN HEMT[C]. Boston: Proceedings of the IEEE MTT-S International Microwave Symposium Digest, 2009:925-928. |
[50] | Wang Z. Demystifying envelope tracking: Use for high-efficiency power amplifiers for 4G and beyond[J]. IEEE Microwave Magazine, 2015, 16(3):106-129. |
[51] | Komatsuzaki Y, Lanfranco S, Kolmonen T, et al. A high efficiency 3.6-4.0 GHz envelope-tracking power amplifier using GaN soft-switching buck-converter[C]. Philadelphia: Proceedings of the IEEE/MTT-S International Microwave Symposium-IMS, 2018:465-468. |
[52] | Sakata S, Lanfranco S, Kolmonen T, et al. An 80MHz modulation bandwidth high efficiency multi-band envelope-tracking power amplifier using GaN single-phase buck-converter[C]. Honolulu: Proceedings of the IEEE MTT-S International Microwave Symposium, 2017:1854-1857. |
[53] |
Florian C, Cappello T, Paganelli R P, et al. Envelope tracking of an RF high power amplifier with an 8-level digitally controlled GaN-on-Si supply modulator[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(8):2589-2602.
doi: 10.1109/TMTT.2015.2447552 |
[54] |
Zavarei M J, Taherzadeh-Sani M. Envelope-tracking common-drain CMOS power amplifier with a switching-only supply modulator for LTE applications[J]. Microelectronics Journal, 2018, 72(2):24-31.
doi: 10.1016/j.mejo.2017.11.013 |
[55] |
Yan J J, Hsia C, Kimball D F, et al. Design of a 4-W envelope tracking power amplifier with more than one octave carrier bandwidth[J]. IEEE Journal of Solid-State Circuits, 2012, 47(10):2298-2308.
doi: 10.1109/JSSC.2012.2204927 |
[56] | Kenington P B. Linearised RF amplifier and transmitter techniques[J]. Microwave Engineering Europe, 1998, 1(1): 35-36. |
[57] |
Lee M W, Lee Y S, Kam S H, et al. A wideband digital predistortion for highly linear and efficient GaN HEMT Doherty power amplifier[J]. Microwave and Optical Technology Letters, 2010, 52(2):484-487.
doi: 10.1002/mop.24951 |
[58] |
Faulkner M. Amplifier linearization using RF feedback and feedforward techniques[J]. IEEE Transactions on Vehicular Technology, 2002, 47(1):209-215.
doi: 10.1109/25.661047 |
[59] |
Hu Y, Boumaiza S. Power-scalable wideband linearization of power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(5):1456-1464.
doi: 10.1109/TMTT.2016.2550039 |
[60] | Joshin K, Kikkawa T, Hayashi H, et al. A 174 W high- efficiency GaN HEMT power amplifier for W-CDMA base station applications[C]. Washington,D.C.: IEEE International Electron Devices Meeting, 2003:983-985. |
[61] | Bensmida S, Hammi O, Ghannouchi F M. High efficiency digitally linearized GaN based power amplifier for 3G applications[C]. Orlando: Proceedings of the IEEE Radio and Wireless Symposium, 2008:419-422. |
[62] |
Quay R. Gallium nitride electronics[J]. Semiconductor Science and Technology, 2013, 28(7):70301-70306.
doi: 10.1088/0268-1242/28/7/070301 |
[63] | 於建生, 桑磊, 孙世滔, 等. 宽带射频功放晶体管非线性输出电容研究[J]. 电子科技, 2015, 28(4):102-105. |
Yu Jiansheng, Sang Lei, Sun Shitao, et al. Research on nonlinear output capacitance of broadband RF power amplifier transistors[J]. Electronic Science and Technology, 2015, 28(4):102-105. | |
[64] |
Zhao Y T, Li G H, Zhang S, et al. Influence of low-temperature GaN-Cap layer thickness on the InGaN/GaN multiple quantum well structure and its luminescence[J]. Optical Materials Express, 2021, 11(5): 1411-1419.
doi: 10.1364/OME.420877 |
[1] | 张娟,湛婷,廖原,宋志东. Ku波段80 W固态功率合成放大器的设计[J]. , 2014, 27(6): 35-. |
[2] | 杨扬,李培咸,周小伟,贾文博,赵晓云. Mg注入非极性a面GaN退火温度的研究[J]. , 2013, 26(1): 12-. |
[3] | 陈琛, 杨民武. 线性化Doherty功率放大器的研究[J]. , 12, 25(9): 82-. |
|