[1] |
康海燕, 冯晓丽. 基于科研思维与创新能力培养的太阳能电池实验教学设计[J]. 大学物理实验, 2022, 35(5):136-140.
|
|
Kang Haiyan, Feng Xiaoli. Teaching design of solar cell experiment based on scientific research thinking and innovative ability training[J]. Physical Experiment of College, 2022, 35(5):136-140.
|
[2] |
谷平, 程勇, 谌静. 科研实验反哺光纤通信技术教学的实践[J]. 实验科学与技术, 2022, 20(6):93-97.
|
|
Gu Ping, Cheng Yong, Chen Jing. The practice of scientific research experiment feeding back the classroom teaching of optical fiber communication technology[J]. Experiment Science and Technology, 2022, 20(6):93-97.
|
[3] |
盖磊. 基于外腔面发射激光器的激光原理与技术实验研究[J]. 大学物理, 2022, 41(8):42-46.
|
|
Gai Lei. Study of laser principle and technology experiment based on external cavity surface emitting laser[J]. College Physics, 2022, 41(8):42-46.
|
[4] |
何禄英, 余响林, 喻发全, 等. MoS2微球制备及电化学性能综合研究型实验设计[J]. 实验技术与管理, 2021, 38(5):79-93.
|
|
He Luying, Yu Xianglin, Yu Faquan, et al. Design of comprehensive research experiment on preparation and electrochemical properties of MoS2 microspheres[J]. Experimental Technology and Management, 2021, 38(5):79-93.
|
[5] |
戴明华, 张红哲, 姜英, 等. 多层次激光加工实训教学的探索与实践[J]. 实验科学与技术, 2021, 19(4):141-144.
|
|
Dai Minghua, Zhang Hongzhe, Jiang Ying, et al. Exploration and practice of multi-level laser processing practical teaching[J]. Experiment Science and Technology, 2021, 19(4):141-144.
|
[6] |
刘一州, 乔文超, 高空, 等. 高功率超快光纤激光技术发展研究[J]. 中国激光, 2021, 48(12):39-57.
|
|
Liu Yizhou, Qiao Wenchao, Gao Kong, et al. Development of high power ultrafast fiber laser technology[J]. Chinese Journal of Lasers, 2021, 48(12):39-57.
|
[7] |
金振阳, 万相奎, 庞恺, 等. 脉冲激光相位涨落的量子随机数发生器[J]. 光通信研究, 2022, 48(6):27-34.
|
|
Jin Zhenyang, Wan Xiangkui, Pang Kai, et al. Quantum random number generator for pulse laser phase fluctuation[J]. Study on Optical Communications, 2022, 48(6):27-34.
|
[8] |
姜晨, 郝宇, 姜臻禹, 等. 综合型精密制造技术实验教学平台研制与应用[J]. 电子科技, 2019, 32(2):25-31.
|
|
Jiang Chen, Hao Yu, Jiang Zhenyu, et al. Development and application of comprehensive precision manufacturing technology experimental teaching platform[J]. Electronic Science and Technology, 2019, 32(2):25-31.
|
[9] |
Yun L, Qiu Y, Yang C H, et al. PbS quantum dots as a saturable absorber for ultrafast laser[J]. Photonics Research, 2018, 6(11):1028-1032.
doi: 10.1364/PRJ.6.001028
|
[10] |
Mcdonald S, Konstantatos G, Zhang S, et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics[J]. Nature Materials, 2005(4):138-142.
|
[11] |
Xu Y H, Wang Z T, Guo Z N, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J]. Advanced Optical Materials, 2016(4):1223-1229.
|
[12] |
邓海芹, 樊超, 郭琨, 等. 基于斜立生长硒化铅纳米片可饱和吸收体的光纤脉冲激光研究[J]. 光子学报, 2021, 50(10):188-197.
|
|
Deng Haiqin, Fan Chao, Guo Kun, et al. Research of fiber pulse laser generation with oblique grown PbSe nanosheets saturable absorber[J]. Acta Photonica Sinica, 2021, 50(10):188-197.
|
[13] |
Liu X, Gao Q, Zheng Y, et al. Recent progress of pulsed fiber lasers based on transition-metal dichalcogenides and black phosphorus saturable absorbers[J]. Nanophotonics, 2020, 9(8):1-17.
doi: 10.1515/nanoph-2019-0361
|
[14] |
Mao D, Du B B, Yang D X, et al. Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets[J]. Small, 2016, 12(11): 1489-1497.
doi: 10.1002/smll.201503348
pmid: 26800122
|
[15] |
Yun L, Zhang H C, Cui H, et al. Lead sulfde quantum dots mode locked, wavelength-tunable soliton fiber laser[J]. IEEE Photonics Technology Letters, 2021, 33(3):119-122.
doi: 10.1109/LPT.68
|
[16] |
Yun L, Ding C, Ding Y Q, et al. High-power mode-locked fiber laser using lead sulfde quantum dots saturable absorber[J]. Journal of Lightwave Technology, 2022, 40(24):7901-7906.
doi: 10.1109/JLT.2022.3206788
|
[17] |
Li L, Pang L H, Wang R F, et al. Ternary transition metal dichalcogenides for high power vector dissipative soliton ultrafast fiber laser[J]. Laser Photonics Reviews, 2022(16):1-8.
|
[18] |
Huang F, Si J, Chen T, et al. Wide-range wavelength tunable mode-locked fiber laser based on fiber Bragg grating[J] IEEE Photonics Technology Letters, 2020, 32(17):1025-1028.
doi: 10.1109/LPT.2020.3009381
|