[1] |
Deilamsalehy H, Havens T C, Lautala P, et al. An automatic method for detecting sliding railway wheels and hot bearings using thermal imagery[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2017, 231(6):690-700.
doi: 10.1177/0954409716638703
|
[2] |
Cao H, Fan F, Zhou K, et al. Wheel-bearing fault diagnosis of trains using empirical wavelet transform[J]. Measurement, 2016, 82(1):439-449.
doi: 10.1016/j.measurement.2016.01.023
|
[3] |
Zhang D, Entezami M, Stewart E, et al. Adaptive fault feature extraction from wayside acoustic signals from train bearings[J]. Journal of Sound Vibration, 2018, 425(4):221-238.
doi: 10.1016/j.jsv.2018.04.004
|
[4] |
Brandon V H, Jae Y, David H. Low speed bearing fault diagnosis using acoustic emission sensors[J]. Applied Acoustics, 2016, 105(4):35-44.
doi: 10.1016/j.apacoust.2015.10.028
|
[5] |
刘文朋, 刘永强, 杨绍普, 等. 基于典型谱相关峭度图的滚动轴承故障诊断方法[J]. 振动与冲击, 2018, 37(8):87-92.
|
|
Liu Wenpeng, Liu Yongqiang, Yang Shaopu, et al. Fault diagnosis of rolling bearing based on typical correlated kurtogram[J]. Journal of Vibration and Shock, 2018, 37(8):87-92.
|
[6] |
Glowacz A. Acoustic based fault diagnosis of three-phase induction motor[J]. Applied Acoustics, 2018, 137(3):82-89.
doi: 10.1016/j.apacoust.2018.03.010
|
[7] |
Abdullah M, David M. A comparative experimental study on the use of acoustic emission and vibration analysis for bearing defect identification and estimation of defect size[J]. Mechanical Systems and Signal Processing, 2006, 20(7):1537-1571.
doi: 10.1016/j.ymssp.2004.10.013
|
[8] |
Glowacz A, Glowacz W, Glowacz Z, et al. Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals[J]. Measurement, 2017, 113(8):1-9.
doi: 10.1016/j.measurement.2017.08.036
|
[9] |
孔凡让. 强噪声多声源陡畸变高速列车轴承声学诊断理论基础研究[J]. 机械工程学报, 2014, 50(16):111-117.
|
|
Kong Fanrang. Study on the theoretical basis of acoustic diagnosis of high speed train bearings with strong noise,multiple sound sources and steep distortion[J]. Journal of Mechanical Engineering, 2014, 50(16):111-117.
|
[10] |
樊高瞻, 周俊, 朱昆莉. 基于改进形态小波阈值降噪的轴承复合故障声学诊断[J]. 振动与冲击, 2020, 39(12):221-226.
|
|
Fan Gaozhan, Zhou Jun, Zhu Kunli. An improved morphological-wavelet threshold denosing method based acoustic diagnosis for bearing composite faults[J]. Journal of Vibration and Shock, 2020, 39(12):221-226.
|
[11] |
顾佶智, 师蔚, 胡定玉, 等. 强背景噪声下基于谱峭度-波束形成轴承故障特征提取[J]. 噪声与振动控制, 2022, 42(3):110-115.
|
|
Gu Jizhi, Shi Wei, Hu Dingyu, et al. Bearing fault feature extraction based on spectral kurtosis beamforming under strong background[J]. Noise and Vibration Control, 2022, 42(3):110-115.
|
[12] |
He S Y, Hu D Y, Yu G, et al. Trackside acoustic detection of axle bearing fault using wavelet domain moving beamforming method[J]. Applied Acoustics, 2022, 193(4):108851-108862.
|
[13] |
苏润凡, 廖爱华, 胡定玉, 等. 基于小波旁瓣相消器的轴承故障特征提取[J]. 测控技术, 2022, 41(12):29-35.
|
|
Su Runfan, Liao Aihua, Hu Dingyu, et al. Bearing fault feature extraction based on wavelet generalized sidelobe canceller[J]. Measurement & Control Technology, 2022, 41(12):29-35.
|
[14] |
闫书豪, 乔美英. 基于一维WConv-BiLSTM的轴承故障诊断算法[J]. 电子科技, 2021, 34(4):75-82.
|
|
Yan Shuhao, Qiao Meiying. Bearing fault diagnosis algorithm based on one-dimensional WConv-BiLSTM[J]. Electronic Science and Technology, 2021, 34(4):75-82.
|
[15] |
刘方, 何清波, 沈长青, 等. 运动声源多普勒畸变信号的一种时域校正方法[J]. 声学学报, 2014, 39(2):185-190.
|
|
Liu Fang, He Qingbo, Shen Changqing, et al. A time domain correction method for Doppler-distortion signal from acoustic moving source[J]. Acta Acustica, 2014, 39(2):185-190.
|
[16] |
黄雅静, 廖爱华, 于淼, 等. 基于改进CNN的轴承声学故障诊断[J]. 电子科技, 2023, 36(1):75-80,94.
|
|
Huang Yajing, Liao Aihua, Yu Miao, et al. An improved CNN method for bearing acoustic fault diagnosis[J]. Electronic Science and Technology, 2023, 36(1):75-80,94.
|
[17] |
Smith W A, Borghesani P, Ni Q, et al. Optimal demodulation-band selection for envelope-based diagnostics:A comparative study of traditional and novel tools[J]. Mechanical Systems and Signal Processing, 2019, 134(10):106303-106309.
doi: 10.1016/j.ymssp.2019.106303
|
[18] |
Smith W A, Randall R B, Peng Z, et al. Use of cyclostationary properties to diagnose planet bearing faults in variable speed conditions[C]. Melbourne: the Tenth DST Group International Conference on Health and Usage Monitoring Systems, 2017:1557-1563.
|
[19] |
Barry D V V, Kevin M B. Beamforming:A versatile approach to spatial filtering[J]. IEEE ASSP Magazine, 1988, 5(2):4-24.
|
[20] |
Antoni J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007, 21(1):108-124.
doi: 10.1016/j.ymssp.2005.12.002
|