›› 2011, Vol. 24 ›› Issue (1): 47-.

• 论文 • 上一篇    下一篇

强化学习的模型、算法及应用

战忠丽,王强,陈显亭   

  1. (吉林电子信息职业技术学院 计算机系,吉林 吉林 132021)
  • 出版日期:2011-01-15 发布日期:2010-12-30
  • 作者简介:战忠丽(1972-),女,副教授。研究方向:Web信息检索和多媒体技术。

Reinforcement Learning Model,Algorithms and Its Application

 ZHAN Zhong-Li, WANG Qiang, CHEN Xian-Ting   

  1. (Department of Computer,Jilin Technology College of Electronic Information,Jilin 132021,China)
  • Online:2011-01-15 Published:2010-12-30

摘要:

强化学习不需要具有先验知识,通过试错与环境交互获得策略的改进,具有自学习和在线学习能力,是构造智能体的核心技术之一。文中首先综述了强化学习模型和基本原理,然后介绍了强化学习的主要算法,包括Sarsa算法、TD算法、Q-学习算法及函数估计算法,最后介绍了强化学习的应用情况及未来研究方向。

关键词: 强化学习, Sarsa算法, 瞬时差分算法, Q-学习算法, 函数估计

Abstract:

Reinforcement Learning does not need prior knowledge,and it gets optional policy through trial and error,its capacity of self-improving and online learning is one of the basic technologies of intelligent agent.In the paper,we firstly introduce the model and foundation of RL,then,we deeply discuss the main algorithms of RL,including Sarsa,temporal difference,Q-learning and function approximation,finally,we briefly introduce some applications of RL and some future research direction.

Key words: reinforcement learning;sarsa;temporal difference;Q-Learning;function approximation

中图分类号: 

  • TP301.6