[1]Darrel Hankerson.椭圆曲线密码学导论[M].张焕国,译.北京:电子工业出版社,2005.
[2]Koblitz N.An Elliptic Curve Implement of the Finite Field Digital Signature Algorithm[C].Berlin:Springer,Advance in Cryptology-CRYPTO,1998.
[3]Solinas J A.Efficient Arithmetic on Koblitz Curves[J].Designs,Codes and Cryptography,2000,19(2-3):195-249.
[4]白国强,周涛,陈弘毅.一类安全椭圆曲线的选取及其标量乘法的快速运算[J].电子学报,2002,30(11):1654-1657.
[5]胡磊,冯登国,文铁华.一类Koblitz椭圆曲线的快速点乘[J].软件学报,2003,14(11):1907-1910.
[6]Avanzi R,Sica F.Scalar Multiplication on Koblitz Curves Using Double Bases[EB/OL].(2007-03-15)[2010-06-08] http://iacr.org.
[7]Wong K W,Lee E C W,Cheng L M,et al.Fast Elliptic Scalar Multiplication Using New Dou-ble-base Chain and Point Halving[J].Applied Mathematics and Computation 183,2006(2):1000-1007.
[8]Solinas J A.Low-Weight Binary Represen-tations for Pairs of Integers[R].USA:Technical Report CORR,2001.
[9]Hasan M A.Power Analysis Attacks and Alg-orithmic Approaches to Their Countermeasures for K-oblitz Curve Cryptosystems[J].IEEE Trans.on Computers,2001,50(10):1071-1083.
[10]Lee D H,Chee S,Hwang S C,et al.Improved Scalar Multiplication on Elliptic Curve Defend Over 2Fmn[J].ETRI Journal,2004,26(3):153-160. |