Electronic Science and Technology ›› 2020, Vol. 33 ›› Issue (8): 10-16.doi: 10.16180/j.cnki.issn1007-7820.2020.08.002
Previous Articles Next Articles
ZOU Junchen,QI Jinpeng,LI Na,LIU Jialun,ZHU Houjie
Received:
2019-05-21
Online:
2020-08-15
Published:
2020-08-24
Supported by:
CLC Number:
ZOU Junchen,QI Jinpeng,LI Na,LIU Jialun,ZHU Houjie. Design and Implementation of a Fast Online Algorithm for Mutation Point Detection[J].Electronic Science and Technology, 2020, 33(8): 10-16.
Table 3
Statistical results of four sliding window algorithms for EEG data detection"
窗口宽度W | 参数 | TSTKS | HWKS | KS | T |
---|---|---|---|---|---|
32 | 细节波动DS | 1.462 3 | 1.515 8 | 0.673 4 | 0.679 8 |
统计波动VS | 87.490 4 | 89.226 2 | 50.380 6 | 105.988 8 | |
时耗Tim/s | 0.203 0 | 0.133 0 | 0.321 0 | 0.375 0 | |
64 | 细节波动DS | 1.253 9 | 1.797 6 | 0.725 9 | 0.489 6 |
统计波动VS | 83.182 0 | 81.983 4 | 64.811 0 | 66.215 2 | |
时耗Tim/s | 0.047 0 | 0.033 0 | 0.117 0 | 0.171 0 | |
128 | 细节波动DS | 2.567 6 | 2.232 2 | 1.576 5 | 0.886 9 |
统计波动VS | 143.976 4 | 141.814 5 | 144.720 2 | 102.982 4 | |
时耗Tim/s | 0.018 0 | 0.014 0 | 0.052 0 | 0.141 0 | |
256 | 细节波动DS | 7.082 7 | 3.986 4 | 1.922 6 | 1.008 5 |
统计波动VS | 251.787 2 | 189.326 4 | 146.791 9 | 83.966 3 | |
时耗Tim/s | 0.005 0 | 0.002 0 | 0.011 0 | 0.213 0 |
[1] |
Aminikhanghahi S, Cook D J. A survey of methods for time series change point detection[J]. Knowledge and Information Systems, 2017,51(2):339-367.
doi: 10.1007/s10115-016-0987-z pmid: 28603327 |
[2] | 宋巧红. 一种数据流突变点快速探测算法的研究与实现[D]. 上海:东华大学, 2018. |
Song Qiaohong. Research and implementation of a fast detection algorithm for abrupt-point change of data stream[D]. Shanghai:Donghua University, 2018. | |
[3] |
Fatih C. Change point detection in time series data using support vectors[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2010,24(1):73-95.
doi: 10.1142/S0218001410007865 |
[4] |
Yoshinobu K, Masashi S. Sequential change point detection based on directdensity-ratio estimation[J]. Statistical Analysis and Data Mining, 2012,5(2):114-127.
doi: 10.1002/sam.v5.2 |
[5] |
Song L, Makoto Y, Nigel C, et al. Change-point detection in time-series data by relative density-ratio estimation[J]. Neural Networks, 2013,43(1):72-83.
doi: 10.1016/j.neunet.2013.01.012 |
[6] |
Katherine B E. Time series analysis and its applications[J]. Journal of the American Statistical Association, 2002,97(458):656-657.
doi: 10.1198/jasa.2002.s477 |
[7] |
Richard L. Time series analysis and its applications[J]. International Journal of Forecasting, 2001,17(2):299-301.
doi: 10.1016/S0169-2070(01)00083-8 |
[8] | Naoki I, Jurgen K. Change-point detection of climate time series by nonparametric method[J]. Lecture Notes in Engineering and Computer Science, 2010,2186(1):445. |
[9] | 苏卫星, 朱云龙, 刘芳, 等. 时间序列异常点及突变点的检测算法[J]. 计算机研究与发展, 2014,51(4):781-788. |
Su Weixing, Zhu Yunlong, Liu Fang, et al. Outliers and change-points detection algorithm for time series[J]. Journal of Computer Research and Development, 2014,51(4):781-788. | |
[10] | 吕凤毛. 面向数据有效学习的机器学习技术研究[D]. 成都:电子科技大学, 2018. |
Lü Fengmao. Research of machine learning techniques for data-efficient learning[D]. Chengdu:University of Electronic Science and Technology of China, 2018. | |
[11] | 顾健. 相关向量机分类方法的应用研究[J]. 电子科技, 2016,29(6):37-40. |
Gu Jian. Application research on classification method of relevance vector machine[J]. Electronic Science and Technology, 2016,29(6):37-40. | |
[12] | 韩敏, 李宇, 韩冰. 基于改进结构保持数据降维方法的故障诊断研究[J]. 自动化学报, 2019(1):1-11. |
Han Min, Li Yu, Han Bing. Research on fault diagnosis of data dimension reduction based on improved structure preserving algorithm[J]. Acta Automatica Sinica, 2019(1):1-11. | |
[13] | 黄铉. 特征降维技术的研究与进展[J]. 计算机科学, 2018,45(1):16-21. |
Huang Xuan. Research and development of feature dimensionality reduction[J]. Computer Science, 2018,45(1):16-21. | |
[14] | 王强. 决策树过拟合问题研究[D]. 合肥:合肥工业大学, 2008. |
Wang Qiang. Overfitting problem researching on decision tree[D]. Hefei:Hefei University of Technology, 2008. | |
[15] | 陈大伟, 闫昭, 刘昊岩. SVD系列算法在评分预测中的过拟合现象[J]. 山东大学学报(工学版), 2014,44(3):15-21. |
Chen Dawei, Yan Zhao, Liu Haoyan. Overfitting phenomenon of the series of single value decomposition algorithms in rating prediction[J]. Journal of Shandong University(Engineering Science Edition), 2014,44(3):15-21. | |
[16] | 吕子昂, 罗四维, 杨坚, 等. 模型的固有复杂度和泛化能力与几何曲率的关系[J]. 计算机学报, 2007(7):1094-1103 |
Lü Ziang, Luo Siwei, Yang Jian, et al. The research between intrinsic complexity and generalization of a model and the geometric curvature[J]. Chinese Journal of Computers, 2007(7):1094-1103. | |
[17] | 王伟平, 李建中, 张冬冬, 等. 数据流上周期更新滑动窗口的连接算法[J]. 哈尔滨工业大学学报, 2005(6):756-759. |
Wang Weiping, Li Jianzhong, Zhang Dongdong, et al. Periodically updating sliding window join algorithms over data streams[J]. Journal of Harbin Institute of Technology, 2005(6):756-759. | |
[18] | 李建中, 张冬冬. 滑动窗口规模的动态调整算法[J]. 软件学报, 2004(12):1800-1814. |
Li Jianzhong, Zhang Dongdong. Algorithms for dynamically adjusting the sizes of sliding windows[J]. Journal of Software, 2004(12):1800-1814. | |
[19] | 康伟, 李战怀, 张龙波. 基于滑动窗口的数据流连接聚集查询降载策略[J]. 计算机工程, 2009,35(22):50-52. |
Kang Wei, Li Zhanhuai, Zhang Longbo. Load shedding strategy of join aggregation query over data streams based on sliding window[J]. Computer Engineering, 2009,35(22):50-52. | |
[20] | Qi J P, Zhang Q, Qi J, et al. Multi-channel detection for abrupt change based on the ternary search tree and kolmogorov statistic method[C]. Hangzhou:34th Chinese Control Conference (CCC), 2015. |
[21] | Qi J P, Zhang Q, Zhu Y, et al. Anovel method for fast change-point detection on simulated time series and electrocardiogram data[J]. PLoS ONE, 2014,9(4):1-15. |
[22] |
宋巧红, 齐金鹏, 张煜. 基于多级Haar小波变换与KS统计的突变点快速探测方法[J]. 计算机工程, 2018,44(5):14-18.
doi: 10.19678/j.issn.1000-3428.0046777 |
Song Qiaohong, Qi Jinpeng, Zhang Yu. Fast abrupt point detection method based on multistage Haar wavelet transform and KS statistic[J]. Computer Engineering, 2018,44(5):14-18.
doi: 10.19678/j.issn.1000-3428.0046777 |
[1] | SONG Zhangming,HE Huiyong,HUANG Yuejun. Study on On-Line Detection of Surface Defects of Flat Enameled Wire [J]. Electronic Science and Technology, 2021, 34(5): 72-78. |