[1] |
Ren Z X, Gao S H, Chia L, et al. Region-based saliency detection and its application in object recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013,24(5):769-779.
doi: 10.1109/TCSVT.2013.2280096
|
[2] |
Gao Y, Wang M, Tao D C, et al. 3-D object retrieval and recognition with hypergraph analysis[J]. IEEE Transactions on Image Processing, 2012,21(9):4290-4303.
doi: 10.1109/TIP.2012.2199502
pmid: 22614650
|
[3] |
He J F, Feng J Y, Liu X L, et al. Mobile product search with bag of hash bits and boundary reranking[C]. Providence:IEEE Conference on Computer Vision and Pattern Recognition, 2012.
|
[4] |
Borji A, Frintrop S, Sihite D, et al. Adaptive object tracking by learning background context[C]. Providence:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2012.
|
[5] |
Mahadevan V, Vasconcelos N. Saliency-based discriminant tracking[C]. Miami:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009.
|
[6] |
Zhao R, Quyang W L, Wang X G. Unsupervisedsalience learning for person re-identification[C]. Portland:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013.
|
[7] |
Wang L J, Lu H C, Wang Y F, et al. Learning to detect salient objects with image-level supervision[C]. Honolulu:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[8] |
郭迎春, 袁浩杰, 吴鹏, 等. 基于Local特征和Regional特征的图像显著性检测[J]. 自动化学报, 2013,39(8):1214-1224.
doi: 10.3724/SP.J.1004.2013.01214
|
|
Guo Yingchun, Yuan Haojie, Wu Peng, et al. Image saliency detection based on local and regional features[J]. Acta Automatica Sinica, 2013,39(8):1214-1224.
doi: 10.3724/SP.J.1004.2013.01214
|
[9] |
刘甜甜. 基于稀疏和低秩表示的显著性目标检测[J]. 电子科技, 2015,28(2):112-115.
|
|
Liu Tiantian. Spare and low rank based saliency detection[J]. Electronic Science and Technology, 2015,28(2):112-115.
|
[10] |
Cheng M M, Zhang G X, Mitra N J, et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,37(3):569-582.
pmid: 26353262
|
[11] |
张昆. 基于全局和局部信息融合的图像显著性检测研究[J]. 电子科技, 2018,31(5):84-88.
|
|
Zhang Kun. Research on image saliency detection based on global and local information fusion[J]. Electronic Science and Technology, 2018,31(5):84-88.
|
[12] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]. Columbus:Proceedings of Computer Science, 2014.
|
[13] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[14] |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]. Boston:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
[15] |
Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation[C]. Boston:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
[16] |
Xie S N, Tu Z W. Holistically-nested edge detection[C]. Boston:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
[17] |
Hou Q B, Cheng M M, Hu X W, et al. Deeply supervised salient object detection with short connections[C]. Hawaii:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[18] |
Zhang P P, Wang D, Lu H C, et al. Amulet: Aggregating multi-level convolutional features for salient object detection[C]. Hawaii:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[19] |
Krähenbühl P, Koltun V. Efficient inference in fully connected crfs with gaussian edge potentials[C]. Colorado Springs:Proceedings of the Neural Information Processing Systems, 2011.
|
[20] |
钱生, 陈宗海, 林名强, 等. 基于条件随机场和图像分割的显著性检测[J]. 自动化学报, 2015,41(4):711-724.
|
|
Qian Sheng, Chen Zonghai, Lin Mingqiang, et al. Saliency detection based on conditional random field and image segmentation[J]. Acta Automation, 2015,41(4):711-724.
|
[21] |
Liu N, Han J W, Yang M. PiCANet: Learning pixel-wise contextual attention for saliency detection[C]. Salt Lake:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018
|
[22] |
Md Amirul I, Mrigank R, Shujon N, et al. Gated feedback refinement network for dense image labeling[C]. Hawaii:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[23] |
Zhang X N, Wang T T, Qi J Q, et al. Progressive attention guided recurrent network for salient object detection[C]. Salt Lake:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
|
[24] |
Liu N, Han J W. Dhsnet:deep hierarchical saliency network for salient object detection[C]. Las Vegas:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[25] |
Xi X Y, Luo Y K, Wang P, et al. Salient object detection based on an efficient end-to-end saliency regression network[J]. Neurocomputing, 2019,323(1):265-276.
|
[26] |
Yan Q, Xu L, Shi J P, et al. Hierarchical saliency detection[C]. Portland:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013.
|
[27] |
Li Y, Hou X D, Koch C, et al. The secrets of salient object segmentation[C]. Columbus:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014.
|
[28] |
Li G B, Yu Y Z. Visual saliency based on multiscale deep features[C]. Boston:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
|
[29] |
Wang L, Wang L, Lu H, et al. Saliency detection with recurrent fully convolutional networks[C]. Las Vegas:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[30] |
Zhang P, Wang D, Lu H, et al. Learning uncertain convolutional features for accurate saliency detection[C]. Hawaii:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|
[31] |
Luo Z, Mishra A, Achkar A, et al. Non-local deep features for salient object detection[C]. Hawaii:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
|