[1] |
Paas F, Tuovinen J E. Cognitive load measurement as means to advance cognitive load theory[J]. Educational Psychologist, 2003,38(1):63-71.
|
[2] |
陈善广, 姜国华, 王春慧, 等. 航天人因工程研究进展[J]. 载人航天, 2015,21(2):95-105.
|
|
Chen Guangshan, Jiang Guohua, Wang Chunhui, et al. Advancement in space human factors engineering[J]. Manned Spaceflight, 2015,21(2):95-105.
|
[3] |
莫秋云, 李荣敬. 山区公路条件下驾驶员生理特性研究[J]. 电子科技, 2013,26(3):83-89.
|
|
Mo Qiuyun, Li Rongjing. Driver’s physiological characteristics under mountain road conditions[J]. Electronic Science and Technology, 2013,26(3):83-89.
|
[4] |
赵云飞, 张立国, 张勤, 等. BP神经网络在AP1000核电站事故诊断应用中的初步研究[J]. 原子能科学技术, 2014,48(S1):480-484.
|
|
Zhao Yunfei, Zhang Liguo, Zhang Qin, et al. Preliminary study on application of BP neural network in AP1000 nuclear power plant accident diagnosis[J]. Atomic Energy Science and Technology, 2014,48(S1):480-484.
|
[5] |
Colligan L, Potts H W, Finn C T, et al. Cognitive workload changes for nurses transitioning from a legacy system with paper documentation to a commercial electronic health record[J]. International Journal of Medical Informatics, 2015,84(7):469-476.
pmid: 25868807
|
[6] |
刘辉, 杜玉晓, 彭杰, 等. 脑-机接口技术发展[J]. 电子科技, 2011,24(5):116-119.
|
|
Liu Hui, Du Yuxiao, Peng Jie, et al. A review of brain-computer interface development[J]. Electronic Science and Technology, 2011,24(5):116-119.
|
[7] |
Antonenko P, Paas F, Grabner R, et al. Using electroencephalography to measure cognitive load[J]. Educational Psychology Review, 2010,22(4):425-438.
|
[8] |
Gevins A, Mc Evoy L K, Smith M E, et al. Long-term and within-day variability of working memory performance and EEG in individuals[J]. Clinical Neurophysiology, 2012,123(7):1291-1299.
pmid: 22154302
|
[9] |
Model D, Zibulevsky M. Learning subject-specific spatial and temporal filters for single-trial EEG classification[J]. Neuro Image, 2006,32(4):1631-1641.
pmid: 16828316
|
[10] |
Yin Z, Zhang J. Operator functional state classification using least square support vector machine based recursive feature elimination technique[J]. Computer Methods and Programs in Biomedicine, 2014,113(1):101-115.
doi: 10.1016/j.cmpb.2013.09.007
pmid: 24138846
|
[11] |
Yin Z, Zhang J. Cross-session classification of mental workload levels using EEG and an adaptive deep learning model[J]. Biomedical Signal Processing and Control, 2017,33(1):30-47.
|
[12] |
Sauer J, Nickel P, Wastell D. Designing automation for complex work environments under different levels of stress[J]. Applied Ergonomics, 2013,44(1):119-127.
|
[13] |
Zhang X Z, Zheng W L, Lu B L. EEG-based sleep quality evaluation with deep transfer learning[C]. Shanghai:International Conference on Neural Information Processing, 2017.
|
[14] |
Baldwin C, Penaranda B. Adaptive training using an artificial neural network and EEG metrics for within and cross-task workload classification[J]. Neuro Image, 2012,59(1):48-56.
pmid: 21835243
|
[15] |
Fan J, Wade J W, Key A P, et al. EEG-based affect and workload recognition in a virtual driving environment for ASD intervention[J]. IEEE Transactions on Biomedical Engineering, 2018,65(1):43-51.
pmid: 28422647
|
[16] |
Ho T K K, Gwak J, Park C M, et al. Discrimination of mental workload levels from multi-channel fNIR Susing deep leaning-based approaches[J]. IEEE Access, 2019,7(1):24392-24403.
|
[17] |
Yin Z, Zhang J. Cross-subject recognition of operator functional states via EEG and switching deep belief networks with adaptive weights[J]. Neurocomputing, 2017,260(1):349-366.
|