[1] |
赵为伟, 宋晓伟. 机载雷达技术的发展现状及趋势[J]. 电子科技, 2018, 31(1):79-82.
|
|
Zhao Weiwei, Song Xiaowei. Current situation and prospect for technology of airborne radar[J]. Electronic Science and Technology, 2018, 31(1):79-82.
|
[2] |
曾海兵, 谢永亮, 陈珂. 提高雷达低空探测能力的措施研究[J]. 电子科技, 2016, 29(3):164-167.
|
|
Zeng Haibing, Xie Yongliang, Chen Ke. Methods for improving low-altitude detection performance of rada[J]. Electronic Science and Technology, 2016, 29(3):164-167.
|
[3] |
张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7(5):531-547.
|
|
Zhang Qun, Hu Jian, Luo Ying, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7(5):531-547.
|
[4] |
李彦兵, 杜兰, 刘宏伟, 等. 基于微多普勒特征的地面目标分类[J]. 电子与信息学报, 2010, 32(12):2848-2853.
|
|
Li Yanbing, Du Lan, Liu Hongwei, et al. Ground targets classification based on micro-doppler effect[J]. Journal of Electronics and Information Technology, 2010, 32(12):2848-2853.
|
[5] |
吴远斌. 多波段可重构雷达接收机技术的研究[J]. 现代雷达, 2006, 28(5):75-78.
|
|
Wu Yuanbin. Research on multiband reconfigurable radar receiver technology[J]. Modern Radar, 2006, 28(5):75-78.
|
[6] |
王晨. 宽带数字阵可重构接收通道结构研究[D]. 成都:电子科技大学, 2017.
|
|
Wang Chen. Study on reconfigurable receiving channel structures for wideband digital array radar[D]. Chengdu:University of Electronic Science and Technology of China, 2017.
|
[7] |
田跃龙, 刘志国. 微波光子雷达技术综述[J]. 电子科技, 2017, 30(5):193-198.
|
|
Tian Yuelong, Liu Zhiguo. A review of photonics-based radar techniques[J]. Electronic Science and Technology, 2017, 30(5):193-198.
|
[8] |
Li R M, Li W Z, Ding M L, et al. Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Optical Express, 2017, 25(13):14334-14340.
doi: 10.1364/OE.25.014334
|
[9] |
Zhang F Z, Guo Q S, Wang Z Q, et al. Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging[J]. Optics Express, 2017, 25(14):16274-16281.
doi: 10.1364/OE.25.016274
|
[10] |
Zou W W, Zhang H, Long X, et al. All-optical central-frequency-programmable and bandwidth-tailorable radar[J]. Scientific Reports, 2016, 6(1):1-8.
doi: 10.1038/s41598-016-0001-8
|
[11] |
Ghelfi P, Laghezza F, Scotti F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492):341-345.
doi: 10.1038/nature13078
|
[12] |
Scotti F, Laghezza F, Ghelfi P, et al. Multi-band software-defined coherent radar based on a single photonic transceiver[J]. IEEE Tracsactions on Microwave Theory and Techniques, 2015, 63(2):1-7.
|
[13] |
曹继明, 李若明, 杨继尧, 等. 基于去调频接收技术的微波光子双波段线性调频连续波雷达[J]. 雷达学报, 2019, 8(2):189-196.
|
|
Cao Jiming, Li Ruoming, Yang Jiyao, et al. Dual-band LFM-CW radar scheme based on photonic stretch processing[J]. Journal of Radars, 2019, 8(2):189-196.
|
[14] |
Scotti F, Laghezza F, Bogoni A. Pandora:single unit fully coherent S and X band software defined radar[C]. Dresden:The Sixteenth International Radar Symposium, 2015.
|
[15] |
Guo Q S, Zhang F Z, Pan S L. Dual-band linear frequency modulation signal generation by optical frequency quadrupling and polarization multiplexing[J]. IEEE Photonics Technology Letters, 2017, 29(16):1320-1323.
doi: 10.1109/LPT.2017.2722004
|
[16] |
Caputi W J. Stretch: A time-transformation technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, 7(2):269-278.
|