Electronic Science and Technology ›› 2022, Vol. 35 ›› Issue (8): 7-13.doi: 10.16180/j.cnki.issn1007-7820.2022.08.002
Previous Articles Next Articles
ZHOU Fan,ZHAO Xuan,SHAO Jie
Received:
2021-03-12
Online:
2022-08-15
Published:
2022-08-10
Supported by:
CLC Number:
ZHOU Fan,ZHAO Xuan,SHAO Jie. Power Amplifier Behavior Modeling Based on Deep Temporal Convolutional Network[J].Electronic Science and Technology, 2022, 35(8): 7-13.
[1] |
Cai J, King J, Yu C, et al. Support vector regression-based behavioral modeling technique for RF power transistors[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(5):428-430.
doi: 10.1109/LMWC.2018.2819427 |
[2] | 袁晓辉. 记忆非线性功率放大器行为建模及其数字预失真[D]. 成都: 西南交通大学, 2016. |
Yuan Xiaohui. Behavioral modeling and digital pre-distortion of nonlinear power amplifiers with memory effects[D]. Chengdu: Southwest Jiaotong University, 2016. | |
[3] |
Braithwaite R N. Digital predistortion of an RF power amplifier using a reduced volterra series model with a memory polynomial estimator[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(10):3613-3623.
doi: 10.1109/TMTT.2017.2729513 |
[4] |
Al-kanan H, Yang X, Li F. Improved estimation for Saleh model and predistortion of power amplifiers using 1-dB compression point[J]. The Journal of Engineering, 2020, 2020(1):13-18.
doi: 10.1049/joe.2019.0973 |
[5] |
Mir I, Eisa S A, Maqsood A. Review of dynamic soaring: technical aspects, nonlinear modeling perspectives and future directions[J]. Nonlinear Dynamics, 2018, 94(4):3117-3144.
doi: 10.1007/s11071-018-4540-3 |
[6] |
Diamantopoulos N P, Nishi H, Kobayashi W, et al. On the complexity reduction of the second-order Volterra nonlinear equalizer for IM/DD systems[J]. Journal of Lightwave Technology, 2018, 37(4):1214-1224.
doi: 10.1109/JLT.2018.2890118 |
[7] |
Braithwaite R N. Digital predistortion of an RF power amplifier using a reduced volterra series model with a memory polynomial estimator[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(10):3613-3623.
doi: 10.1109/TMTT.2017.2729513 |
[8] | Zhu Y P, Lang Z Q. A new convergence analysis for the Volterra series representation of nonlinear systems[J]. Automatica, 2020, 111(3):1-10. |
[9] | 江明玉, 刘太君, 叶焱, 等. 基于广义改进型RBF网络的射频功放非线性建模[J]. 移动通信, 2018, 42(3):64-69. |
Jiang Mingyu, Liu Taijun, Ye Yan, et al. Nonlinear modeling of RF amplifiers based on generalized improved RBF networks[J]. Mobile Communications, 2018, 42(3):64-69. | |
[10] | Mišić J, Marković V, Marinković Z, et al. Behavioral modeling of low noise amplifiers for LTE systems based on modified Elman neural networks[C]. Serbia:Proceedings of the Twenty-second Telecommunications Forum Telfor, 2014. |
[11] | 吴硕. 双频功率放大器行为模型和数字预失真技术的研究[D]. 南京: 东南大学, 2019. |
Wu Shuo. Reaearch on the behavioral models and digital pre-distortion of concurrent dual-band power amplifiers[D]. Nanjing: Southeast University, 2019. | |
[12] | Kani J N, Elsheikh A H. DR-RNN: A deep residual recurrent neural network for model reduction[D]. New York: Cornell University, 2017. |
[13] |
Sun J, Shi W, Yang Z, et al. Behavioral modeling and linearization of wideband RF power amplifiers using BiLSTM networks for 5G wireless systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11):10348-10356.
doi: 10.1109/TVT.2019.2925562 |
[14] | Gonzalez J, Yu We. Non-linear system modeling using LSTM neural networks[J]. IFAC-Papers on Line, 2018, 51(13):485-489. |
[15] | Lopez M, Yu Wen. Nonlinear system modeling using convolutional neural networks[C]. Mexico City:The Fourteenth International Conference on Electrical Engineering, Computing Science and Automatic Control, 2017. |
[16] | Li H, Zhang Y, Li G, et al. Vector decomposed long short-term memory model for behavioral modeling and digital predistortion for wideband RF power amplifiers[J]. IEEE Access, 2020(8):63780-63789. |
[17] | 韦张跃昊, 钱升谊. 基于滤波重构和卷积神经网络的心电信号分类[J]. 电子科技, 2019, 32(11):7-11. |
Wei Zhangyuehao, Qian Shengyi. ECG signal classification based on filter reconstruction and convolutional neural network[J]. Electronic Science and Technology, 2019, 32(11):7-11. | |
[18] | Mehta S, Rastegari M, Caspi A, et al. Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation[C]. Munich:Proceedings of the European Conference on Computer Vision, 2018. |
[19] | Oord A, Dieleman S, Zen H, et al. Wavenet: A generative model for raw audio[D]. New York: Cornell University, 2016. |
[20] | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016. |
[21] | Hara K, Saito D, Shouno H. Analysis of function of rectified linear unit used in deep learning[C]. Killarney:Proceedings of International Joint Conference on Neural Networks, 2015. |
[22] | Zhang Z. Improved adam optimizer for deep neural networks[C]. Banff:Proceedings of IEEE/ACM the Twenty-sixth International Symposium on Quality of Service, 2018. |