Electronic Science and Technology ›› 2022, Vol. 35 ›› Issue (9): 74-78.doi: 10.16180/j.cnki.issn1007-7820.2022.09.011
Previous Articles Next Articles
MING Can,MA Chunwei
Received:
2021-03-23
Online:
2022-09-15
Published:
2022-09-15
Supported by:
CLC Number:
MING Can,MA Chunwei. Numerical Simulation and Thermal Cycle Analysis of MAG Welding Temperature Field Based on ABAQUS[J].Electronic Science and Technology, 2022, 35(9): 74-78.
[1] |
Raoelison R N, Buiron N, Rachik M, et al. Efficient welding conditions in magnetic pulse welding process[J]. Journal of Manufacturing Processes, 2012, 14(3):372-377.
doi: 10.1016/j.jmapro.2012.04.001 |
[2] | 金庆勉, 孔祥伟, 金志博, 等. 高强钢T型接头MAG焊接温度场研究[J]. 热加工工艺, 2018, 47(9):180-183. |
Jin Qingmian, Kong Xiangwei, Jin Zhibo, et al. Study on MAG welding temperature field of high strength steel T-joint[J]. Hot Working Technology, 2018, 47(9):180-183. | |
[3] | Wang F, Cressault Y, Teulet P, et al. Spectroscopic investigation of partial LTE assumption and plasma temperature field in pulsed MAG arcs[J]. Journal of Physics, 2018, 51(25):422-435. |
[4] |
Li W, Yu R, Huang D, et al. Numerical simulation of multi-layer rotating arc narrow gap MAG welding for medium steel plate[J]. Journal of Manufacturing Processes, 2019, 45(9):460-471.
doi: 10.1016/j.jmapro.2019.07.035 |
[5] | Tian Z F, Li J F, Chen Z X, et al. Effect of process conditions on residual stress in laser-MAG welding of high strength steel[J]. Key Engineering Materials, 2020, 83(1):71-77. |
[6] | Zhang F, Liu S, Liu F, et al. Effect of groove angle and heat treatment on the mechanical properties of high-strength steel hybrid laser-MAG welding joints[J]. Materials Research Express, 2020, 6(12):1265-1277. |
[7] | Xiong L, Cheng J, Chuang A, et al. Synchrotron experiment and simulation studies of magnesium-steel interface manufactured by impact welding[J]. Materials Science and Engineering:A, 2021(1):67-80. |
[8] |
Lee J Y, Ko S H, Farson D F, et al. Mechanism of keyhole formation and stability in stationary laser welding[J]. Journal of Physics D:Applied Physics, 2002, 35(13):1570-1582.
doi: 10.1088/0022-3727/35/13/320 |
[9] |
Lindgren L E, Runnemalm H, Näsström M O. Simulation of multipass welding of a thick plate[J]. International Journal for Numerical Methods in Engineering, 1999, 44(9):1301-1316.
doi: 10.1002/(SICI)1097-0207(19990330)44:9<1301::AID-NME479>3.0.CO;2-K |
[10] | 温永彬, 巩建鸣, 耿鲁阳, 等. 13MnNiMoNbR厚板焊接温度场数值模拟[J]. 电焊机, 2011, 41(5):80-83. |
Wen Yongbin, Gong Jianming, Geng Luyang, et al. Numerical simulation of welding temperature field in 13MnNiMoR thick plate[J]. Electric Welding Machine, 2011, 41(5):80-83. | |
[11] | 刘有艳, 温永彬. 13MnNiMoNbR特厚板焊接温度场的数值模拟[J]. 电焊机, 2014, 44(5):195-198. |
Liu Youyan, Wen Yongbin. Numerical simulation of welding temperature field in 13MnNiMoNbR super thick plate[J]. Electric Welding Machine, 2014, 44(5):195-198. | |
[12] |
Salimi S, Bahemmat P, Haghpanahi M. A 3D transient analytical solution to the temperature field during dissimilar welding processes[J]. International Journal of Mechanical Sciences, 2014, 79(9):66-74.
doi: 10.1016/j.ijmecsci.2013.11.015 |
[13] | Gao X D, Wang L, Chen Z Q, et al. Process stability analysis and weld formation evaluation during disk laser-mag hybrid welding[J]. Optics and Lasers in Engineering, 2020, 124(1):1-13. |
[14] | Liu G, Ma L N, Ma Z D, et al. Effects of welding speed and post-weld hot rolling on microstructure and mechanical properties of friction stir-welded AZ31 magnesium alloy[J]. Acta Metallurgica Sinica(English Letters), 2018, 31(8):853-864. |
[15] |
Okano S, Mochizuki M. Engineering model of metal active gas welding process for efficient distortion analysis[J]. ISIJ International, 2017, 57(3):511-516.
doi: 10.2355/isijinternational.ISIJINT-2016-394 |
[16] |
Zielinska S, Pellerin S, Valensi F, et al. Gas influence on the arc shape in MIG-MAG welding[J]. The European Physical Journal Applied Physics, 2008, 43(1):111-122.
doi: 10.1051/epjap:2008106 |
[17] | 李雪峰. 基于梯形加减速和数字交叉差补控制的光热跟踪系统[J]. 电子设计工程, 2020, 28(24):188-193. |
Li Xuefeng. Photothermal tracking system based on trapezoidal acceleration &deceleration and digital cross complement[J]. Electronic Design Engineering, 2020, 28(24):188-193. |
[1] | XIU Xiaobo,LI Boquan,ZHOU Feng. Optimization of Temperature Sensor Location Based on Genetic Algorithm [J]. Electronic Science and Technology, 2021, 34(9): 17-23. |
[2] | FANG Xin,WU Yaohui,WU Haozhen. Calculation of Motor Temperature Field Based on Fluent [J]. Electronic Science and Technology, 2021, 34(12): 30-35. |
[3] | XU Yangyang,SAN Hongjun,CHEN Jiupeng,XIE Feiya,WEI Shunxiang,WANG Wanglin,LIU Liang,CHEN Jia. Numerical Simulation Analysis of Temperature Field in LaserCladding of FL-DLight3-4000 Laser [J]. Electronic Science and Technology, 2021, 34(11): 1-10. |
[4] | SONG He,WU Yaohui,WU Haozhen. Research on Transient Temperature Field of Motor Based on Multifield Coupling [J]. Electronic Science and Technology, 2020, 33(5): 15-20. |
[5] | XU Feng, HAN Yi-Beng. Finite Element Method for Thermal Effect of Laser Irradiating Materials [J]. , 2018, 31(3): 17-. |
[6] | SUN Yi 1,CHU Chaomei 1,GU Jianhua 2. Simulation of Thermal Load of the Dual Clutches of Dual Clutch Transmission [J]. , 2017, 30(4): 64-. |
[7] | MENG Dongdong,WU Yanwei,FAN Cailian,CAI Ye. Temperature Field Simulation of Laser Transmission Welding PA66 Based on Volumetric Heat Source [J]. , 2016, 29(1): 22-. |
[8] | LIU Wen-Qing. Finite Element Analysis of the Effect of Circles on Temperature Fields and Stress Fields of Flanges [J]. , 2012, 25(4): 41-. |
[9] | HU Ying-Lu, LI Pei-Xian, LI Zhi-Ming, WU Li-Min, LIU Hong-Cai, LI Ding-Wei, BAI Jun-Chun. Simulation and Analysis of Temperature Modulate Curve in MOCVD with the Chipped Infrared Heating System [J]. , 2012, 25(1): 108-. |
[10] | LI Jing, CHEN Zu-Hong. Study of Thermal and Mechanical Damage in Si-CCD Induced by Laser [J]. , 2011, 24(4): 122-. |
[11] | LV Juan, GUO Zhen, WANG Shi-Yu. Determination of Temperature Field Distribution of Frequency Doubling Crystal by the Mirror Method [J]. , 2010, 23(8): 32-. |
[12] | XIONG Bo, YANG Wei. Numerical Calculation of the Temperature Field in the Oil Tank [J]. , 2010, 23(6): 91-. |