Electronic Science and Technology ›› 2024, Vol. 37 ›› Issue (1): 24-32.doi: 10.16180/j.cnki.issn1007-7820.2024.01.004
Previous Articles Next Articles
LI Yudong,MA Jinquan,XIE Zongfu,SHEN Xiaolong
Received:
2022-09-05
Online:
2024-01-15
Published:
2024-01-11
Supported by:
CLC Number:
LI Yudong,MA Jinquan,XIE Zongfu,SHEN Xiaolong. Research on Task Scheduling of Heterogeneous Platform Signal Processing[J].Electronic Science and Technology, 2024, 37(1): 24-32.
Table 1.
Summary of typical task scheduling algorithms"
算法类型 | 典型算法 | 优化目标 | 指标参数 | 应用场景 | ||||
---|---|---|---|---|---|---|---|---|
HA | 列表调度 | HEFT[ | 最小化完成时间 最小化调度长度 | 调度长度比、加速比、松弛度、 效率、归一化调度长度 | 异构系统 | |||
PETS[ | ||||||||
聚类调度 | DSC[ | 最小化并行时间、避免依赖性 失衡、解决运行时不平衡、最 小化最差调度长度 | 更优调度频率、执行完成时间、 调度长度比、最小调度长度 | 不限数量处理器、云计算、 分布式计算 | ||||
复制调度 | DBUS[ | 最小化调度长度 | 归一化调度长度、平均调度长度 | 异构系统 | ||||
MHA | EGA-TS[ Greedy-Ant[ | 最小化调度长度/执行时间、 减少迭代次数、负载均衡 | 调度长度比、加速比、负载均衡、 QoS、平均调度长度 | 云计算、异构计算 | ||||
AIA | 机器学习算法[ 深度学习算法[ 强化学习算法[ | 最小完成时间、任务开销、 减少迭代次数 | 调度长度比、平均调度长度、 迭代次数、功耗 | 云计算、异构系统 | ||||
THA | TPN-GA[ ACO-PSO[ | 最小化完成时间、QoS满意度、 响应时间、最小调度长度 | 调度长度比、响应时间、功耗、 最小调度长度 | 云计算、异构系统、 分布式计算等 |
Table 2.
Comparative analysis of HA、MHA、AIA and THA"
算法类型 | 优点 | 缺点 | 适用场景 |
---|---|---|---|
HA | 离线算法,复杂度低,减少调度中的开销 | 计算量较大,灵活性差,耗时较长, 需建立符合实际问题的启发式规则 | 多用于异构系统静态 任务调度 |
MHA | 减少计算量,提高优化效率,不过分依赖 实际问题模型 | 调度开销大,依赖初始值的设定, 结果不可预计 | 最小化调度长度,参数寻 优的任务调度 |
AIA | 简化模型复杂度,具有更高的容错率, 应用更广泛 | 数据模型的选择对结果影响较大, 训练时间较长 | 多目标,实时任务调度系统 |
THA | 智能决策分配调度任务到合适的处理 器上,实现资源的动态分配 | 算法仍处于深度开发 探索阶段 | 多种调度场景 |
[1] |
李启锐, 彭心怡. 基于深度强化学习的云作业调度及仿真研究[J]. 系统仿真学报, 2022, 34(2):258-268.
doi: 10.16182/j.issn1004731x.joss.21-0337 |
Li Qirui, Peng Xinyi. Job scheduling and simulation in cloud based on deep reinforcement learning[J]. Journal of System Simulation, 2022, 34(2):258-268.
doi: 10.16182/j.issn1004731x.joss.21-0337 |
|
[2] | 张鹤于. 基于强化学习的异构计算平台调度算法研究[D]. 西安: 西安电子科技大学, 2021:33-40. |
Zhang Heyu. Research on scheduling algorithm of heterogeneous computing platform based on reinforcement learning[D]. Xi'an: Xidian University, 2021:33-40. | |
[3] | 李玮瑶. 基于资源感知的大数据处理任务调度方法[J]. 信息与电脑(理论版), 2019, 31(24):106-107. |
Li Weiyao. Resource-aware large data processing task scheduling method[J]. Information & Computer, 2019, 31(24):106-107. | |
[4] | 郭晓勇. 基于资源感知的动态云任务调度算法研究[D]. 呼和浩特: 内蒙古大学, 2021:19-23. |
Guo Xiaoyong. Research on dynamic cloud task scheduling algorithm based on resource awareness[D]. Hohhot: Inner Mongolia University, 2021:19-23. | |
[5] | 杜姗姗, 冯瑞. 混合任务调度方法研究及其应用[J]. 微型电脑应用, 2015, 31(1):14-16,21. |
Du Shanshan, Feng Rui. Hybrid task schedule and its application[J]. Microcomputer Applications, 2015, 31(1):14-16,21. | |
[6] | 李娜, 高博, 谢宗甫. 分层异构信号处理平台调度方法研究[J]. 电子科技, 2022, 35(2):7-13. |
Li Na, Gao Bo, Xie Zongfu. Research on scheduling method of layered heterogeneous signal processing platform[J]. Electronic Science and Technology, 2022, 35 (2):7-13. | |
[7] |
杨平平, 岳春生, 胡泽明. 异构信号处理平台中层次性流水线调度算法[J]. 计算机工程, 2018, 44(11):83-89.
doi: 10.19678/j.issn.1000-3428.0048806 |
Yang Pingping, Yue Chunsheng, Hu Zeming. Multi-level pipeline scheduling algorithm in heterogeneous signal processing platform[J]. Computer Engineering, 2018, 44 (11):83-89.
doi: 10.19678/j.issn.1000-3428.0048806 |
|
[8] | Graham R L, Lawler E L, Lenstra J K, et al. Optimization and approximation in deterministic sequencing and scheduling:A survey[M]. Vancouver: Annals of Discrete Mathematics, Elsevier, 1979:55-90. |
[9] | 罗乐, 王春华, 张多利, 等. 一种多核系统改进型列表调度算法[J]. 电子科技, 2020, 33(6):52-57. |
Luo Le, Wang Chunhua, Zhang Duoli, et al. A multicore system improved list scheduling algorithm[J]. Electronic Science and Technology, 2020, 33(6):52-57. | |
[10] |
Jackson J R. Simulation research on job shop production[J]. Naval Research Logistics Quarterly, 1957, 4(3):287-295.
doi: 10.1002/nav.v4:4 |
[11] | 江超. 异构计算平台静态任务调度算法综述[J]. 网络新媒体技术, 2021, 10(4):1-10. |
Jiang Chao. A survey on static task scheduling algorithms in heterogeneous computing platforms[J]. Network New Media Technology, 2021, 10(4):1-10. | |
[12] | 钱晓龙, 唐立新, 刘文新. 动态调度的研究方法综述[J]. 控制与决策, 2001(2):141-145. |
Qian Xiaolong, Tang Lixin, Liu Wenxin. Dynamic scheduling:A survey of research methods[J]. Control and Decision, 2001(2):141-145. | |
[13] |
Topcuoglu H, Hariri S, Wu M Y. Performance-effective and low-complexity task scheduling for heterogeneous computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2002, 13(3):260-274.
doi: 10.1109/71.993206 |
[14] |
Liu G Q, Poh K L, Xie M. Iterative list scheduling for heterogeneous computing[J]. Journal of Parallel and Distributed Computing, 2005, 65(5):654-665.
doi: 10.1016/j.jpdc.2005.01.002 |
[15] | Hagras T, Janecek J. A simple scheduling heuristic for heterogeneous computing environments[C]. Ljubljana: Parallel and Distributed Computing, International Symposium on IEEE Computer Society, 2003:1512-1520. |
[16] | Radulescu A, Van Gemund A J C. Fast and effective task scheduling in heterogeneous systems[C]. Cancun: Proceedings of the Ninth Heterogeneous Computing Workshop, 2000:319-326. |
[17] | Dorostkar F, Mirzakuchaki S. List scheduling for heterogeneous computing systems introducing a performance-effective definition for critical path[C]. Mashhad: The Ninth International Conference on Computer and Knowledge Engineering,IEEE, 2019:9-16. |
[18] |
Arabnejad H, Barbosa J G. List scheduling algorithm for heterogeneous systems by an optimistic cost table[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 25(3):682-694.
doi: 10.1109/TPDS.2013.57 |
[19] | Ilavarasan E, Thambidurai P, Mahilmannan R. Performance effective task scheduling algorithm for heterogeneous computing system[C]. Lillie: The Fourth International Symposium on Parallel and Distributed Computing, 2005:630-638. |
[20] |
Ijaz S, Munir E U. MOPT:List-based heuristic for scheduling workflows in cloud environment[J]. The Journal of Supercomputing, 2019, 75(7):3740-3768.
doi: 10.1007/s11227-018-2726-6 |
[21] | 李显宁, 钟诚. 异构计算环境下并行任务调度算法研究进展分析[C]. 长春: 全国理论计算机科学学术年会论文集, 2006:528-535. |
Li Xianning, Zhong Cheng. Research progress of parallel task scheduling algorithm in heterogeneous computing environments[C]. Changchun: Proceedings of the National Annual Conference of Theoretical Computer Science, 2006:528-535. | |
[22] | Boeres C, Rebello V E F. A cluster-based strategy for scheduling task on heterogeneous processors[C]. Iguacu: The Sixteenth Symposium on Computer Architecture and High Performance Computing,IEEE, 2004:786-792. |
[23] | Kim S J. A general approach to mapping of parallel computations upon multiprocessor architectures[C]. Fairfax: Proceedings of the International Conference on Parallel Processing IEEE Computer Society, 1988:538-550. |
[24] |
Yu D, Ying Y, Zhang L, et al. Balanced scheduling of distributed workflow tasks based on clustering[J]. Knowledge-Based Systems, 2020, 199(8):105930.
doi: 10.1016/j.knosys.2020.105930 |
[25] | Vidyarthi D P, Tripathi A K, Sarker B K, et al. Cluster-based multiple task allocation in distributed computing system[C]. Santa Fe: The Eighteenth International Parallel and Distributed Processing Symposium, 2004:195-206. |
[26] |
Yang T, Gerasoulis A. DSC:Scheduling parallel tasks on an unbounded number of processors[J]. IEEE Transactions on Parallel and Distributed Systems, 1994, 5(9):951-967.
doi: 10.1109/71.308533 |
[27] | Cirou B, Jeannot E. Triplet:A clustering scheduling algorithm for heterogeneous systems[C]. Valencia: Proceedings of the International Conference on Parallel Processing Workshops, 2001:309-315. |
[28] | Dogan A, Ozguner R. LDBS:A duplication based scheduling algorithm for heterogeneous computing systems[C]. Vancouver: Proceedings of the International Conference on Parallel Processing, 2002:55-62. |
[29] | Hagras T, Janecek J. A high performance,low complexity algorithm for compile-time task scheduling in heterogeneous systems[C]. Cork: The Eighteenth International Parallel and Distributed Processing Symposium, 2004:319-327. |
[30] | Bozdag D, Catalyurek U, Ozguner F. A task duplication based bottom-up scheduling algorithm for heterogeneous environments[C]. Rhodes: Proceedings of IEEE the Twentieth International Parallel & Distributed Processing Symposium, 2006:302-311. |
[31] | Ilavarasan E, Thambidurai P. Levelized scheduling of directed a-cyclic precedence constrained task graphs onto heterogeneous computing system[C]. Besancon: The First International Conference on Distributed Frameworks for Multimedia Applications, 2005:865-871. |
[32] |
Baskiyar S, Dickinson C. Scheduling directed a-cyclic task graphs on a bounded set of heterogeneous processors using task duplication[J]. Journal of Parallel and Distributed Computing, 2005, 65(8):911-921.
doi: 10.1016/j.jpdc.2005.01.006 |
[33] |
He K, Meng X, Pan Z, et al. A novel task-duplication based clustering algorithm for heterogeneous computing environments[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 30(1):2-14.
doi: 10.1109/TPDS.2018.2851221 |
[34] | Dorronsoro B, Pinel F. Combining machine learning and genetic algorithms to solve the independent tasks scheduling problem[C]. Exeter: The Third IEEE International Conference on Cybernetics, 2017:48-57. |
[35] | Fang Y Q, Xia X, Ge J W. Cloud computing task scheduling algorithm based on improved genetic algorithm[C]. Chengdu: IEEE the Third Information Technology, Networking, Electronic and Automation Control Conference, 2019:1314-1325. |
[36] |
Zhou Z, Li F, Zhu H, et al. An improved genetic algorithm using greedy strategy toward task scheduling optimization in cloud environments[J]. Neural Computing and Applications, 2020, 32(6):1531-1541.
doi: 10.1007/s00521-019-04119-7 |
[37] |
Xiang B, Zhang B, Zhang L. Greedy-Ant: Ant colony system-inspired workflow scheduling for heterogeneous computing[J]. IEEE Access, 2017, 5(6):11404-11412.
doi: 10.1109/ACCESS.2017.2715279 |
[38] | Ramash R. Dynamic job shop scheduling-A review of simulation research[J]. OMEGA International Journal of Management Science, 1990, 18(1):43-57. |
[39] |
Liu H, Dong J J. Dispatching rule selection using artificial neural networks for dynamic planning and scheduling[J]. Journal of Intelligent Manufacturing, 1996, 7(3):243-250.
doi: 10.1007/BF00118083 |
[40] |
Fox M S, Smith S F. ISIS-A knowledge-based system for factory scheduling[J]. Expert Systems, 1984, 1(1):25-49.
doi: 10.1111/exsy.1984.1.issue-1 |
[41] | Smith S F, Hynynen J E. Integrated decentralization of production management:An approach for factory scheduling[J]. Intelligent and Integrated Manufacturing Analysis and Synthesis, 1987, 61(2):427-439. |
[42] |
Collinot A, Le Pape C, Pinoteau G. SONIA:A knowledge-based scheduling system[J]. Artificial Intelligence in Engineering, 1988, 3(2):86-94.
doi: 10.1016/0954-1810(88)90024-6 |
[43] | Bensana E, Bel G, Dubois D. OPAL:A multi-knowledge-based system for industrial job-shop scheduling[J]. The International Journalof Production Research, 1988, 26(5):795-819. |
[44] |
何世文, 袁军, 安振宇, 等. 基于图神经网络的联合用户调度与波束成形优化算法[J]. 通信学报, 2022, 43(7):73-84.
doi: 10.11959/j.issn.1000-436x.2022133 |
He Shiwen, Yuan Jun, An Zhenyu, et al. GNN-based optimization algorithm for joint user scheduling and beamforming[J]. Journal on Communications, 2022, 43(7):73-84.
doi: 10.11959/j.issn.1000-436x.2022133 |
|
[45] | 徐胜超, 叶力洪. 基于长短期记忆神经网络的容器云队列在线任务动态分配[J]. 计算机与现代化, 2022, 28(7):79-84. |
Xu Shengchao, Ye Lihong. Container cloud queue online task dynamic allocation based on long short-term memory neural network[J]. Computer and Modernization, 2022, 28(7):79-84. | |
[46] | 罗磊, 陈照云, 王俪璇. 用户QoS感知的GPU集群深度学习任务动态调度[J]. 计算机工程与科学, 2021, 43(8):1331-1340. |
Luo Lei, Chen Zhaoyun, Wang Lixuan. User QoS-aware deep learning tasks dynamic scheduling on GPU cluster[J]. Computer Engineering & Science, 2021, 43(8):1331-1340. | |
[47] | Li N, Gao B, Xie Z, et al. Q-learning based intelligent ant colony scheduling algorithm in heterogeneous system[C]. Chengdu: IEEE the Fourth International Conference on Electronics Technology, 2021:490-501. |
[48] | 张影. 基于机器学习的异构多核系统在线映射方法研究[D]. 合肥: 合肥工业大学, 2019:19-29. |
Zhang Ying. A machine learning based mapping approach for heterogeneous multi-processors system[D]. Hefei: Hefei University of Technology, 2019:19-29. | |
[49] | 高放. 面向片上异构多核系统的机器学习算法并行化技术研究[D]. 北京: 北京工业大学, 2017:43-58. |
Gao Fang. Research on parallelization of machine learning algorithm for on-chip heterogeneous multi-core systems[D]. Beijing: Beijing University of Technology, 2017:43-58. | |
[50] | 陈亮, 阎春平, 陈建霖, 等. 基于深度学习神经网络和量子遗传算法的柔性作业车间动态调度[J]. 重庆大学学报, 2022, 45(6):40-54. |
Chen Liang, Yan Chunping, Chen Jianlin, et al. Dynamic scheduling of flexible job shop based on deep Q-learning neural network and quantum genetic algorithm[J]. Journal of Chongqing University, 2022, 45(6):40-54. | |
[51] | 童钊, 邓小妹, 陈洪剑, 等. 云环境下基于强化学习的多目标任务调度算法[J]. 小型微型计算机系统, 2020, 41(2):285-290. |
Tong Zhao, Deng Xiaomei, Chen Hongjian,et al. Multi-objective task scheduling algorithm based on reinforcement learning in cloud environments[J]. Journal of Chinese Computer Systems, 2020, 41(2):285-290. | |
[52] |
Rashidi S, Sharifian S. A hybrid heuristic queue based algorithm for task assignment in mobile cloud[J]. Future Generation Computer Systems, 2017, 68(3):331-345.
doi: 10.1016/j.future.2016.10.014 |
[53] |
Senthil Kumar A M, Venkatesan M. Multi-objective task scheduling using hybrid genetic-ant colony optimization algorithm in cloud environment[J]. Wireless Personal Communications, 2019, 107(4):1835-1848.
doi: 10.1007/s11277-019-06360-8 |
[54] |
Chen X, Long D. Task scheduling of cloud computing using integrated particle swarm algorithm and ant colony algorithm[J]. Cluster Computing, 2019, 22(2):2761-2769.
doi: 10.1007/s10586-017-1479-y |
[55] |
Cho K M, Tsai P W, Tsai C W, et al. A hybrid meta-heuristic algorithm for VM scheduling with load balancing in cloud computing[J]. Neural Computing and Applications, 2015, 26(6):1297-1309.
doi: 10.1007/s00521-014-1804-9 |
[1] | SHEN Xiaolong,MA Jinquan,JI Yawei,XIE Zongfu,LI Yiting,LI Yudong. Sparrow Optimization Algorithm for Task Scheduling of Heterogeneous Processing Platform [J]. Electronic Science and Technology, 2024, 37(1): 33-40. |
[2] | LI Na,GAO Bo,XIE Zongfu. Research on Scheduling Method of Layered Heterogeneous Signal Processing Platform [J]. Electronic Science and Technology, 2022, 35(2): 7-13. |
[3] | WANG Yang,WANG Xiaolei,YUAN Ziang,YUAN Ruming. A Matrix Multiplication Mapping Technology Based on NOC Multi-Core System [J]. Electronic Science and Technology, 2021, 34(5): 54-60. |
[4] | LIANG Yingxin,TIAN Haoshan. Improved Hybrid Algorithm Based on Bacterial Foraging and Particle Swarm Optimization [J]. , 2017, 30(4): 79-. |
[5] | CHEN Maoqiang. A Task Scheduling Algorithm for Parallel System Based on DAG [J]. , 2014, 27(9): 29-. |
[6] | ZHAI Libo,HAN Ning. Remaining Life Forecast Model Based on Kalman Filter [J]. , 2013, 26(9): 28-. |
[7] | ZHAO Wei,HUANG Kaichen,LUO Yonghong. A High-performance Hardware Architecture for Hummingbird Cryptography Algorithm [J]. , 2013, 26(6): 131-. |
[8] | BAI Jian-Pu, WU Qiang. Research on and Application of Ant Colony Algorithms Hybrid Genetic Algorithms [J]. , 2011, 24(4): 20-. |
|