Journal of Xidian University ›› 2024, Vol. 51 ›› Issue (1): 100-113.doi: 10.19665/j.issn1001-2400.20230204
• Computer Science and Technology • Previous Articles Next Articles
ZHU Dongxia(), JIA Hongjie(), HUANG Longxia()
Received:
2022-10-17
Online:
2024-01-20
Published:
2023-09-14
Contact:
JIA Hongjie
E-mail:2235756176@qq.com;jiahj@ujs.edu.cn;hlxia@ujs.edu.cn
CLC Number:
ZHU Dongxia, JIA Hongjie, HUANG Longxia. Subspace clustering algorithm optimized by non-negative Lagrangian relaxation[J].Journal of Xidian University, 2024, 51(1): 100-113.
"
数据集 | 谱聚类 | 鲁棒核k-均值 | 低秩表示 | 单纯形稀疏表示 | 全局结构学习方法 | 结构化图学习 | 文中方法 |
---|---|---|---|---|---|---|---|
YALE | 49.42 | 48.09 | 53.94 | 54.55 | 55.85 | 61.21 | 62.42 |
AR | 28.83 | 33.43 | 32.02 | 65.00 | 56.79 | 65.13 | 66.79 |
ORL | 57.96 | 54.96 | 71.50 | 69.00 | 62.35 | 68.83 | 73.00 |
JAFFE | 74.88 | 75.61 | 70.89 | 87.32 | 99.83 | 98.12 | 99.06 |
TR45 | 57.39 | 58.13 | 71.45 | 74.02 | 73.04 | 77.25 | |
平均ACC | 53.70 | 54.04 | 57.09 | 69.46 | 69.77 | 73.27 | 75.70 |
"
数据集 | 谱聚类 | 鲁棒核k-均值 | 低秩表示 | 单纯形稀疏表示 | 全局结构学习方法 | 结构化图学习 | 文中方法 |
---|---|---|---|---|---|---|---|
YALE | 52.92 | 52.29 | 59.39 | 57.26 | 56.50 | 59.85 | 63.83 |
AR | 58.37 | 65.44 | 67.23 | 84.16 | 76.02 | 82.61 | 84.05 |
ORL | 75.16 | 74.23 | 84.40 | 84.23 | 78.96 | 80.44 | 84.71 |
JAFFE | 82.08 | 83.47 | 75.73 | 92.93 | 99.35 | 97.32 | 98.59 |
TR45 | 48.03 | 57.86 | 67.82 | 74.24 | 69.96 | 70.27 | |
平均NMI | 63.31 | 66.66 | 71.74 | 77.28 | 76.94 | 78.04 | 80.29 |
"
数据集 | 谱聚类 | 鲁棒核k-均值 | 低秩表示 | 单纯形稀疏表示 | 全局结构学习方法 | 结构化图学习 | 文中方法 |
---|---|---|---|---|---|---|---|
YALE | 51.61 | 49.79 | 55.15 | 58.18 | 57.27 | 65.45 | 66.64 |
AR | 33.24 | 35.87 | 33.33 | 69.52 | 63.45 | 69.16 | 70.95 |
ORL | 61.45 | 59.60 | 75.25 | 76.50 | 74.00 | 67.50 | 77.75 |
JAFFE | 76.83 | 79.58 | 74.18 | 96.24 | 99.85 | 98.12 | 99.06 |
TR45 | 61.25 | 68.18 | 83.62 | 78.26 | 83.76 | 86.52 | |
平均Purity | 56.88 | 58.60 | 59.48 | 76.81 | 74.57 | 76.80 | 80.18 |
[1] | ANAND S K, KUMAR S. Experimental Comparisons of Clustering Approaches for Data Representation[J]. ACM Computing Surveys(CSUR), 2022, 55(3):1-33. |
[2] | 张春祥, 周雪松, 高雪瑶, 等. 融合k均值聚类与LSTM网络的半监督词义消歧[J]. 西安电子科技大学学报, 2021, 48(6):161-171. |
ZHANG Chunxiang, ZHOU Xuesong, GAO Xueyao, et al. Semi-Supervised Word Sense Disambiguation by Combining k-Means Clustering and the LSTM Network[J]. Journal of Xidian University, 2021, 48(6):161-171. | |
[3] |
SHI S, NIE F, WANG R, et al. Self-Weighting Multi-View Spectral Clustering Based on Nuclear Norm[J]. Pattern Recognition, 2022, 124:108429.
doi: 10.1016/j.patcog.2021.108429 |
[4] |
WU C, PENG Q, LEE J, et al. Effective Hierarchical Clustering Based on Structural Similarities in Nearest Neighbor Graphs[J]. Knowledge-Based Systems, 2021, 228:107295.
doi: 10.1016/j.knosys.2021.107295 |
[5] | 冯少荣, 肖文俊. 一种提高DBSCAN聚类算法质量的新方法[J]. 西安电子科技大学学报, 2008, 35(3):523-529. |
FENG Shaorong, XIAO Wenjun. New Method to Improve DBSCAN Clustering Algorithm Quality[J]. Journal of Xidian University, 2008, 35(3):523-529. | |
[6] | 任佳兴, 曹玉东, 曹睿, 等. 一种采用动态子空间的小样本图像分类算法[J]. 西安电子科技大学学报, 2022, 49(5):166-174. |
REN Jiaxing, CAO Yudong, CAO Rui, et al. Algorithm for Classification of Few-Shot Images by Dynamic Subspace[J]. Journal of Xidian University, 2022, 49(5):166-174. | |
[7] | AGRAWAL R, GEHRKE J, GUNOPULOS D, et al. Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications[C]// Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. New York: ACM, 1998:94-105. |
[8] |
PENG X, FENG J, XIAO S, et al. Structured Autoencoders for Subspace Clustering[J]. IEEE Transactions on Image Processing, 2018, 27(10):5076-5086.
doi: 10.1109/TIP.2018.2848470 |
[9] | GAO H, NIE F, LI X, et al. Multi-View Subspace Clustering[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:4238-4246. |
[10] |
PENG C, ZHANG Q, KANG Z, et al. Kernel Two-Dimensional Ridge Regression for Subspace Clustering[J]. Pattern Recognition, 2021, 113:107749.
doi: 10.1016/j.patcog.2020.107749 |
[11] |
VIDAL R. Subspace Clustering[J]. IEEE Signal Processing Magazine, 2011, 28(2):52-68.
doi: 10.1109/MSP.2010.939739 |
[12] | LIU G, LIN Z, YAN S, et al. Robust Recovery of Subspace Structures by Low-Rank Representation[J]. IEEETransactions on Pattern Analysis and Machine Intelligence, 2012, 35(1):171-184. |
[13] | ELHAMIFAR E, VIDAL R. Sparse Subspace Clustering:Algorithm, Theory, and Applications[J]. IEEETransactions on Pattern Analysis and Machine Intelligence, 2013, 35(11):2765-2781. |
[14] |
CAI B, LU G F. Tensor Subspace Clustering Using Consensus Tensor Low-Rank Representation[J]. Information Sciences, 2022, 609:46-59.
doi: 10.1016/j.ins.2022.07.049 |
[15] |
ABHADIOMHEN S E, WANG Z Y, SHEN X J. Coupled Low Rank Representation and Subspace Clustering[J]. Applied Intelligence, 2022, 52(1):530-546.
doi: 10.1007/s10489-021-02409-z |
[16] | DING C, HE X, SIMON H D. NonnegativeLagrangian Relaxation of K-Means and Spectral Clustering[C]//European Conference on Machine Learning. Heidelberg:Springer, 2005:530-538. |
[17] | LU C Y, MIN H, ZHAO Z Q, et al. Robust and Efficient Subspace Segmentation via Least Squares Regression[C]//European Conference on Computer Vision. Heidelberg:Springer, 2012:347-360. |
[18] | HUANG J, NIE F, HUANG H. A New Simplex Sparse Learning Model to Measure Data Similarity for Clustering[C]// Twenty-Fourth International Joint Conference on Artificial Intelligence. New York: ACM, 2015:3569-3575. |
[19] | YOU C Z, SHU Z Q, FAN H H. Low-Rank Sparse Subspace Clustering with a Clean Dictionary[J]. Journal of Algorithms & Computational Technology, 2021, 15: 1748302620983690. |
[20] |
LIU G, ZHANG Z, LIU Q, et al. Robust Subspace Clustering with Compressed Data[J]. IEEE Transactions on Image Processing, 2019, 28(10):5161-5170.
doi: 10.1109/TIP.83 |
[21] | NG A, JORDAN M, WEISS Y. On Spectral Clustering:Analysis and an Algorithm[C]//Advances in Neural Information Processing Systems 14. San Diego:NIPS, 2001:849-856. |
[22] | 续拓, 李洁, 王颖. 叠加信息熵游走数据聚类算法[J]. 西安电子科技大学学报, 2018, 45(4):75-79. |
XU Tuo, LI Jie, WANG Ying. Clustering by Samples Movement in the Superposition Information Entropy Field[J]. Journal of Xidian University, 2018, 45(4):75-79. | |
[23] | XIA R, PAN Y, DU L, et al. Robust Multi-View Spectral Clustering via Low-Rank and Sparse Decomposition[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2014:2149-2155. |
[24] | LI Y, NIE F, HUANG H, et al. Large-Scale Multi-View Spectral Clustering via Bipartite Graph[C]//Twenty-Ninth AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2015:2750-2756. |
[25] | XUE X, NIE F, WANG S, et al. Multi-View Correlated Feature Learning by Uncovering Shared Component[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2017:2810-2816. |
[26] |
CHEN J, MAO H, WANG Z, et al. Low-Rank Representation with Adaptive Dictionary Learning for Subspace Clustering[J]. Knowledge-Based Systems, 2021, 223:107053.
doi: 10.1016/j.knosys.2021.107053 |
[27] | NIE F, WANG X, JORDAN M, et al. The Constrained Laplacian Rank Algorithm for Graph-Based Clustering[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2016:1969-1976. |
[28] | LUO D, NIE F, DING C, et al. Multi-Subspace Representation and Discovery[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Heidelberg: Springer, 2011:405-420. |
[29] | KANG Z, PENG C, CHENG Q. Robust Subspace Clustering via Tighter Rank Approximation[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York: ACM, 2015:393-401. |
[30] | KANG Z, PENG C, CHENG Q. Twin Learning for Similarity and Clustering:a Unified Kernel Approach[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2017:2080-2086. |
[31] |
ZHU X, ZHANG S, LI Y, et al. Low-Rank Sparse Subspace for Spectral Clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(8):1532-1543.
doi: 10.1109/TKDE.69 |
[32] | CHEN Y, LI C G, YOU C. Stochastic Sparse Subspace Clustering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2020:4155-4164. |
[33] |
ZHAO Y, DENG F, PEI J, et al. Progressive Deep Non-Negative Matrix Factorization Architecture with Graph Convolution-Based Basis Image Reorganization[J]. Pattern Recognition, 2022, 132:108984.
doi: 10.1016/j.patcog.2022.108984 |
[34] | DING C, LI T, PENG W, et al. Orthogonal Nonnegative Matrix T-Factorizations for Clustering[C]// Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2006:126-135. |
[35] |
LI D, ZHONG X, DOU Z, et al. Detecting Dynamic Community by Fusing Network Embedding and Nonnegative Matrix Factorization[J]. Knowledge-Based Systems, 2021, 221:106961.
doi: 10.1016/j.knosys.2021.106961 |
[36] | KUANG D, DING C, PARK H. Symmetric Nonnegative Matrix Factorization for Graph Clustering[C]//Proceedings of the 2012 SIAM International Conference on Data Mining. Philadelphia:SIAMS, 2012:106-117. |
[37] | ZHANG S, YOU C, VIDAL R, et al. Learning a Self-Expressive Network for Subspace Clustering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2021:12393-12403. |
[38] | TANG C, LIU X, ZHU X, et al. Feature Selective Projection with Low-Rank Embedding and Dual Laplacian Regularization[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 32(9):1747-1760. |
[39] | MOHAR B. The Laplacian Spectrum of Graphs. Graph Theory,Combinatorics and Applications,Vol.2[M]. New York: Wiley, 1991:871-898. |
[40] |
FAN K. On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations I[J]. Proceedings of the National Academy of Sciences, 1949, 35(11):652-655.
doi: 10.1073/pnas.35.11.652 |
[41] | LEE D, SEUNG H S. Algorithms for Non-Negative Matrix Factorization[C]//Advances in Neural Information Processing Systems, San Diego: NIPS, 2000:556-562. |
[42] |
GAO W, DAI S, ABHADIOMHEN S E, et al. Low Rank Correlation Representation and Clustering[J]. Scientific Programming, 2021, 1:1-12.
doi: 10.1155/1992/125016 |
[43] |
YANG Y, XU D, NIE F, et al. Image Clustering Using Local Discriminant Models and Global Integration[J]. IEEE Transactions on Image Processing, 2010, 19(10):2761-2773.
doi: 10.1109/TIP.2010.2049235 pmid: 20423802 |
[44] |
LV J, KANG Z, LU X, et al. Pseudo-Supervised Deep Subspace Clustering[J]. IEEE Transactions on Image Processing, 2021, 30:5252-5263.
doi: 10.1109/TIP.2021.3079800 |
[45] | 陈昌川, 王海宁, 黄炼, 等. 一种基于局部表征的面部表情识别算法[J]. 西安电子科技大学学报, 2021, 48(5):100-109. |
CHEN Changchuan, WANG Haining, HUANG Lian, et al. Facial Expression Recognition Based on Local Representation[J]. Journal of Xidian University, 2021, 48(5):100-109. | |
[46] |
REN Z, SUN Q. Simultaneous Global and Local Graph Structure Preserving for Multiple Kernel Clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(5):1839-1851.
doi: 10.1109/TNNLS.2020.2991366 |
[47] | DU L, ZHOU P, SHI L, et al. Robust Multiple Kernel K-Means Using L21-Norm[C]//Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2015:3476-3482. |
[48] |
KANG Z, LIN Z, ZHU X, et al. Structured Graph Learning for Scalable Subspace Clustering:From Single View to Multiview[J]. IEEE Transactions on Cybernetics, 2022, 52(9):8976-8986.
doi: 10.1109/TCYB.2021.3061660 |
[1] | CHE Jibin, WANG Changlong, JIA Yan, REN Zizheng, LIU Chunheng, ZHOU Feng. Fast algorithm for intelligent optimization of the cross ambiguity function of passive radar [J]. Journal of Xidian University, 2023, 50(6): 21-33. |
[2] | LIAO Xiaomin, HAN Shuangli, ZHU Xuan, LIN Chushan, WANG Haipeng. Resource optimization algorithm for unmanned aerial vehicle jammer assisted cognitive covert communications [J]. Journal of Xidian University, 2023, 50(6): 75-83. |
[3] | ZHANG Boyang, CHU Yi, YANG Zhongping, ZHOU Qingsong. Efficient manifold algorithm for the waveform design for precision jamming [J]. Journal of Xidian University, 2023, 50(6): 84-92. |
[4] | WANG Jing, ZHANG Kedi, ZHANG Jianyun, ZHOU Qinsong, WU Minglin, LI Zhihui. Precision jamming waveform design method for spatial and frequency domain joint optimization [J]. Journal of Xidian University, 2023, 50(6): 93-104. |
[5] | LIU Didi,YANG Yuhui,XIAO Jiawen,YANG Yifei,CHENG Pengpeng,ZHANG Quanjing. Real-time power scheduling optimization strategy for 5G base stations considering energy sharing [J]. Journal of Xidian University, 2023, 50(5): 44-53. |
[6] | JIANG Qi,ZHAO Xiaomin,ZHAO Guichuan,WANG Jinhua,LI Xinghua. Adaptive score-level fusion for multi-modal biometric authentication [J]. Journal of Xidian University, 2023, 50(4): 11-21. |
[7] | LIU Jingmei,YAN Yibo. Artificial fish feature selection network intrusion detection system [J]. Journal of Xidian University, 2023, 50(4): 132-138. |
[8] | GUO Qiang,LIU Congye,WANG Yani,WANG Yong,CHERNOGOR Leonid. Improved arithmetic optimization algorithm for sparse planar arrays synthesis [J]. Journal of Xidian University, 2023, 50(3): 202-212. |
[9] | CHEN Zhen,LI Cuiyun,LI Xiang. Algorithm for tracking the 3D extended target based on the B-spline surface [J]. Journal of Xidian University, 2023, 50(2): 101-111. |
[10] | LI Dongxia,SONG Siyu,LIU Haitao. Trajectory optimization method of the DF-UAV relay broadcast communication system [J]. Journal of Xidian University, 2023, 50(1): 66-75. |
[11] | ZHAO Yue,LI Zan,LI Bing,LU Xiaoju,HAO Benjian. Robust node placement in TDOA-based multiple sources localization [J]. Journal of Xidian University, 2022, 49(6): 15-22. |
[12] | FENG Xiangchu, WEI Lili. Bilevel optimization approach for annealing parameter estimation in the image denoising problem [J]. Journal of Xidian University, 2022, 49(6): 86-94. |
[13] | ZHANG Hao, QIN Tao, XU Linghua, WANG Xiao, YANG Jing. WSNs node deployment strategy based on the improved multi-objective ant-lion algorithm [J]. Journal of Xidian University, 2022, 49(5): 47-59. |
[14] | LIU Tianyu,CAO Lei. Many-objective evolutionary algorithm based on the multitasking mechanism [J]. Journal of Xidian University, 2022, 49(4): 134-143. |
[15] | ZHANG Dehua,HAO Xinyuan,ZHANG Nina,WEI Qian,LIU Ying. PSO-DE algorithm based on the optimal selection strategy [J]. Journal of Xidian University, 2022, 49(2): 218-227. |
|