[1] |
刘景美, 高源伯. 自适应分箱特征选择的快速网络入侵检测系统[J]. 西安电子科技大学学报, 2021, 48(1):176-182.
|
|
LIU Jingmei, GAO Yuanbo. Fast Network Intrusion Detection System Using Adaptive Binning Feature Selection[J]. Journal of Xidian University, 2021, 48(1):176-182.
|
[2] |
NASIR M H, KHAN S A, KHAN M M, et al. Swarm Intelligence Inspired Intrusion Detection Systems—a Systematic Literature Review[J]. Computer Networks, 2022, 205:108708.
doi: 10.1016/j.comnet.2021.108708
|
[3] |
ALAZZAM H, SHARIEH A, SABRI K E. A Feature Selection Algorithm for Intrusion Detection System Based on Pigeon Inspired Optimizer[J]. Expert Systems with Applications, 2020, 148:113249.
doi: 10.1016/j.eswa.2020.113249
|
[4] |
HAJISALEM V, BABAIE S. A Hybrid Intrusion Detection System Based on ABC-AFS Algorithm for Misuse and Anomaly Detection[J]. Computer Networks, 2018, 136:37-50.
doi: 10.1016/j.comnet.2018.02.028
|
[5] |
ZHANG X, LIAN L, ZHU F. Parameter Fitting of Variogram Based on Hybrid Algorithm of Particle Swarm and Artificial Fish Swarm[J]. Future Generation Computer Systems, 2021, 116:265-274.
doi: 10.1016/j.future.2020.09.026
|
[6] |
AMBUSAIDI M A, HE X, NANDA P, et al. Building an Intrusion Detection System Using a Filter-Based Feature Selection Algorithm[J]. IEEE Transactions on Computers, 2016, 65(10):2986-2998.
doi: 10.1109/TC.2016.2519914
|
[7] |
MOUSTAFA R, SLAY J. UNSW-NB15:A Comprehensive Data Set for Network Intrusion Detection Systems(UNSW-NB15 Network Data Set)[C]// 2015 Military Communications and Information Systems Conference(MilCIS).Piscataway:IEEE, 2015:1-6.
|
[8] |
李晓磊. 一种新型的智能优化方法-人工鱼群算法[D]. 浙江: 浙江大学, 2003.
|
[9] |
SHONE N, NGOC T N, PHAI V D, et al. A Deep Learning Approach to Network Intrusion Detection[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(1):41-50.
doi: 10.1109/TETCI.2017.2772792
|
[10] |
DE LA HOZ E, DE LA HOZ E, ORTIZ A, et al. Feature Selection by Multi-Objective Optimisation:Application to Network Anomaly Detection by Hierarchical Self-Organising Maps[J]. Knowledge-Based Systems, 2014, 71:322-338.
doi: 10.1016/j.knosys.2014.08.013
|
[11] |
DE LA HOZ E, ORTIZ A, ORTEGA J, et al. Network Anomaly Classification by Support Vector Classifiers Ensemble and Non-Linear Projection Techniques[C]// International Conference on Hybrid Artificial Intelligence Systems.Heidelberg:Springer, 2013:103-111.
|
[12] |
ALZAQEBAH A, ALJARAH I, AL-KADI O, et al. A Modified Grey Wolf Optimization Algorithm for an Intrusion Detection System[J]. Mathematics, 2022, 10(6):999.
doi: 10.3390/math10060999
|