Journal of Xidian University ›› 2023, Vol. 50 ›› Issue (4): 139-147.doi: 10.19665/j.issn1001-2400.2023.04.014
• Special Issue on Cyberspace Security • Previous Articles Next Articles
HUO Yuehua1,2(),WU Wenhao1(),ZHAO Faqi1(),WANG Qiang3,4()
Received:
2023-01-15
Online:
2023-08-20
Published:
2023-10-17
CLC Number:
HUO Yuehua,WU Wenhao,ZHAO Faqi,WANG Qiang. Multi-view encryption malicious traffic detection method combined with co-training[J].Journal of Xidian University, 2023, 50(4): 139-147.
"
标注数量 | Acc/% | Rec/% | FPR/% |
---|---|---|---|
20 | 96.88±3.40 | 95.37±6.90 | 1.57±1.62 |
30 | 97.31±2.88 | 95.82±6.18 | 1.17±1.21 |
40 | 98.76±0.52 | 98.08±1.25 | 0.55±0.63 |
50 | 98.84±0.45 | 98.09±1.04 | 0.39±0.65 |
60 | 99.01±0.55 | 98.69±1.07 | 0.66±0.86 |
70 | 98.86±0.54 | 98.85±1.21 | 0.36±0.48 |
80 | 98.98±0.44 | 98.34±0.87 | 0.36±0.52 |
90 | 99.14±0.70 | 98.46±1.39 | 0.16±0.28 |
100 | 99.17±0.36 | 98.54±0.62 | 0.04±0.37 |
[1] | 谭豪, 申兵, 苗旭东, 等. Gimli认证加密方案的不可能差分分析[J]. 西安电子科技大学学报, 2022, 49(5):213-220. |
TAN Hao, SHEN Bing, MIAO Xudong, et al. Impossible Differential Cryptanalysis of the Gimli Authenticated Encryption Scheme[J]. Journal of Xidian University, 2022, 49(5):213-220. | |
[2] | 刘亚, 宫佳欣, 赵逢禹. 加密算法Simpira v2的不可能差分攻击[J]. 西安电子科技大学学报, 2022, 49(5):201-212. |
LIU Ya, GONG Jiaxin, ZHAO Fengyu. Impossible Differential Attack on the Encryption Algorithm Simpira v2[J]. Journal of Xidian University, 2022, 49(5):201-212. | |
[3] | Google. Transparencyreport (2022)[EB/OL].[2022-09-24]. https://transparencyreport.google.com/https/overview. |
[4] | 鲁刚, 郭荣华, 周颖, 等. 恶意流量特征提取综述[J]. 信息网络安全, 2018, 2018(9):1-9. |
LU Gang, GUO Ronghua, ZHOU Ying, et al. Review of Malicious Traffic Feature Extraction[J]. Netinfo Security, 2018, 2018(9):1-9. | |
[5] | GALLAGHER S. Nearly Half of Malware Now Use TLS to Conceal Communications (2022)[EB/OL].[2022-09-24]. https://news.sophos.com/en-us/2021/04/21/nearly-half-of-malware-now-use-tls-to-conceal-communications/. |
[6] | WANG Q, LI W, BAO H, et al. High-Efficient and Few-Shot Adaptive Encrypted Traffic Classification with Deep Tree[C]// MILCOM 2022-2022 IEEE Military Communications Conference (MILCOM).Piscataway:IEEE, 2022:458-463. |
[7] | FANG Y, XU Y, HUANG C, et al. Against Malicious SSL/TLS Encryption:Identify Malicious Traffic Based on Random Forest[C]// Fourth International Congress on Information and Communication Technology.Berlin:Springer, 2020:99-115. |
[8] |
康鹏, 杨文忠, 马红桥. TLS协议恶意加密流量识别研究综述[J]. 计算机工程与应用, 2022, 58(12) :1-11.
doi: 10.3778/j.issn.1002-8331.2110-0029 |
KANG Peng, YANG Wenzhong, MA Hongqiao. TLS Malicious Encrypted Traffic Identification Research[J]. Computer Engineering and Applications, 2022, 58(12):1-11.
doi: 10.3778/j.issn.1002-8331.2110-0029 |
|
[9] |
LI W, ZHANG X Y, BAO H, et al. Robust Network Traffic Identification with Graph Matching[J]. Computer Networks, 2022, 218:109368.
doi: 10.1016/j.comnet.2022.109368 |
[10] | LI W, ZHANG X Y, BAO H, et al. ProGraph:Robust Network Traffic Identification with Graph Propagation[J]. IEEE/ACM Transactions on Networking, 2022:1-15. |
[11] | 曾勇, 吴正远, 董丽华, 等. 加密流量中的恶意流量识别技术[J]. 西安电子科技大学学报, 2021, 48(3):170-187. |
ZENG Yong, WU Zhengyuan, DONG Lihua, et al. Research on Malicious Traffic Identification Technology in Encrypted Traffic[J]. Journal of Xidian University, 2021, 48(3):170-187. | |
[12] | KESHKEH K, JANTAN A, ALIEYAN K, et al. A Review on TLS Encryption Malware Detection:TLS Features,Machine Learning Usage,and Future Directions[C]// International Conference on Advances in Cyber Security.Berlin:Springer, 2021:213-229. |
[13] | 邹洁, 朱国胜, 祁小云, 等. 基于C4.5决策树的HTTPS加密流量分类方法[J]. 计算机科学, 2020, 47(S1):381-385. |
ZOU Jie, ZHU Guosheng, QI Xiaoyun, et al. HTTPS Encrypted Traffic Classification Method Based on C4.5 Decision Tree[J]. Computer Science, 2020, 47(S1):381-385. | |
[14] | TORROLEDO I, CAMACHO L D, BAHNSEN A C. Hunting Malicious TLS Certificates with Deep Neural Networks[C]// Proceedings of the 11th ACM workshop on Artificial Intelligence and Security. New York: ACM, 2018:64-73. |
[15] | YU B, FANG Y, YANG Q, et al. A Survey of Malware Behavior Description and Analysis[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(5):583-603. |
[16] | HUO Y H, ZHAO F Q, ZHANG H S, et al. AS-DMF:A Lightweight Malware Encrypted Traffic Detection Method Based on Active Learning and Feature Selection[J]. Wireless Communications and Mobile Computing, 2022:1-14. |
[17] |
VAN ENGELEN J E, HOOS H H. A Survey on Semi-Supervised Learning[J]. Machine Learning, 2020, 109(2):373-440.
doi: 10.1007/s10994-019-05855-6 |
[18] | 卢宛芝, 丁要军. 基于半监督多视图特征协同训练的网络恶意流量识别方法[J]. 通信技术, 2022, 55(4):513-518. |
LU Wanzhi, DING Yaojun. Network Malicious Traffic Identification Method Based on Semi-supervised Muiti-View Feature Co-Training[J]. Communication Technology, 2022, 55(4):513-518. | |
[19] |
ABDELGAYED T S, MORSI W G, SIDHU T S. Fault Detection and Classification Based on Co-Training of Semisupervised Machine Learning[J]. IEEE Transactions on Industrial Electronics, 2017, 65(2):1595-1605.
doi: 10.1109/TIE.41 |
[20] |
ILIYASU A S, DENG H. Semi-Supervised Encrypted Traffic Classification with Deep Convolutional Generative Adversarial Networks[J]. IEEE Access, 2019, 8:118-216.
doi: 10.1109/Access.6287639 |
[21] | 霍跃华, 赵法起, 吴文昊. 多特征融合的煤矿网络加密恶意流量检测方法[J]. 工矿自动化, 2022, 48(7):142-148. |
HUO Yuehua, ZHAO Faqi, WU Wenhao. Multi-Feature Fusion Based Encrypted Malicious Traffic Detection Method for Coal Mine Network[J]. Journal of Mine Automation, 2022 48(7):142-148. | |
[22] |
PAXSON V. Bro:A System for Detecting Network Intruders in Real-Time[J]. Computer networks, 1999, 31(23-24):2435-2463.
doi: 10.1016/S1389-1286(99)00112-7 |
[23] |
ANDERSON B, PAUL S, MCGREW D. Deciphering Malware’s Use of TLS (without Decryption)[J]. Journal of Computer Virology and Hacking Techniques, 2018, 14(3):195-211.
doi: 10.1007/s11416-017-0306-6 |
[24] | 霍跃华, 赵法起. 基于stacking和多特征融合的加密恶意流量检测研究(2022)[J/OL].[2022-09-24].https://doi.org/10.19678/j.issn.1000-3428.0064805. |
HUO Yuehua, ZHAO Faqi. Analysis of Encrypted Malicious Traffic Detection Based on Stacking and Muti-Feature Fusion (2022)[J/OL].[2022-09-24].https://doi.org/10.19678/j.issn.1000-3428.0064805. | |
[25] | YU T, ZOU F, LI L, et al. An Encrypted Malicious Traffic Detection System Based on Neural Network[C]// 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC).Piscataway:IEEE, 2019:62-70. |
[26] | 黄欣辰, 皋军, 黄豪杰. 基于PCA降维的成对约束半监督聚类集成[J]. 计算机与现代化, 2021, 2021(1):94-99. |
HUANG Xinchen, GAO Jun, HUANG Haojie. Semi-Supervised Clustering Ensemble with Pairwise Constraints Based on PCA Demension Reduction[J]. Computer and Modernization, 2021, 2021(1):94-99. |
[1] | LIU Jingmei,YAN Yibo. Artificial fish feature selection network intrusion detection system [J]. Journal of Xidian University, 2023, 50(4): 132-138. |
[2] | YANG Liying,MENG Tianhao,ZHANG Qingyang,CHAO Si. Implementation of EEG emotion analysis via feature fusion [J]. Journal of Xidian University, 2022, 49(6): 95-102. |
[3] | RONG Ruyi,XUE Peiyun,BAI Jing,JIA Hairong,XIE Yali. Micro-expression recognition based on two-channel decision information fusion [J]. Journal of Xidian University, 2022, 49(4): 127-133. |
[4] | LIU Yunrui,ZHOU Shuisheng. Application of least squares loss in the multi-view learning algorithm [J]. Journal of Xidian University, 2021, 48(6): 151-160. |
[5] | LIU Jingmei,GAO Yuanbo. Fast network intrusion detection system using adaptive binning feature selection [J]. Journal of Xidian University, 2021, 48(1): 176-182. |
[6] | XIAO Lijun,GUO Jichang,GU Xiangyuan. Algorithm for selection of features based on dynamic weights using redundancy [J]. Journal of Xidian University, 2019, 46(5): 155-161. |
[7] | LIU Yongli,GUO Chengyi,LIU Jing,WU Yan. Multi-view fuzzy clustering algorithm using FCS [J]. Journal of Xidian University, 2019, 46(4): 99-106. |
[8] | CHEN Chu. RFCcertDT: a testing tool for certificate validation in SSL/TLS [J]. Journal of Xidian University, 2019, 46(3): 20-25. |
[9] | LI Zhipeng;MA Tianxiang;DU Lan;XU Danlei;LIU Hongwei;ZHANG Zijing. Multi-class classifier design for feature fusion in radar HRRP recognition [J]. J4, 2013, 40(1): 111-117. |
[10] | DOU Zengfa;GAO Lin. Feature selection in conditional random fields using a membrane particle swarm optimizer [J]. J4, 2012, 39(5): 107-112. |
[11] | LI Xue;TIAN Bin;ZHAN Yi;SUN Yong-jun. Digital modulated signal recognition based on intrisic time-scale decomposition parameters [J]. J4, 2010, 37(6): 1132-1136. |
[12] | CHEN Chang-hong;ZHAO Heng;LIANG Ji-min;JIAO Li-cheng. Influence of feature selection on FHMM [J]. J4, 2010, 37(5): 934-940. |
[13] | SHANG Rong-hua;JIAO Li-cheng;WU Jian-she;MA Wen-ping;LI Yang-yang. Immune clonal multi-objective algorithm for unsupervised feature selection [J]. J4, 2010, 37(1): 18-22. |
[14] | LU Man-jun;ZHAN Yi;SI Xi-cai;YANG Xiao-niu. Extraction of the transient characteristics of the communication radiating source and individual indentification [J]. J4, 2009, 36(4): 736-740. |
[15] |
ZHU Hu-ming;JIAO Li-cheng.
Parallel immune clonal selection for feature selection [J]. J4, 2008, 35(5): 853-857. |
|