[1] |
ZHU X, WEN S, CAMTEPE S, et al. Fuzzing:A Survey for Roadmap[J]. ACM Computing Surveys(CSUR), 2022, 54(11s):1-36.
|
[2] |
GOOGLE. OSS-Fuzz Issue Report Tracker(2022)[EB/OL].[2022-12-28]. https://bugs.chromium.org/p/oss-fuzz/issues/list.
|
[3] |
REBERT A, CHA S K, AVGERINOS T, et al. Optimizing Seed Selection for Fuzzing[C]//Proceedings of the 23rd USENIX Security Symposium(USENIX Security 14). Berkeley:USENIX, 2014:861-875.
|
[4] |
WANG J, CHEN B, WEI L, et al. Skyfire:Data-Driven Seed Generation for Fuzzing[C]//Proceedings of the 32nd IEEE Symposium on Security and Privacy(SP). Piscataway:IEEE, 2017:579-594.
|
[5] |
WARTSCHINSKI L, NOLLER Y, VOGEL T, et al. VUDENC:Vulnerability Detection with Deep Learning on a Natural Codebase for Python[J]. Information and Software Technology, 2022,144:106809.
|
[6] |
ZHANG L, WANG J, WANG W, et al. A Novel Smart Contract Vulnerability Detection Method Based on Information Graph and Ensemble Learning[J]. Sensors, 2022, 22(9):3581.
|
[7] |
CAO S, SUN X, BO L, et al. MVD:Memory-Related Vulnerability Detection Based on Flow-Sensitive Graph Neural Networks[C]//Proceedings of the 44th IEEE/ACM International Conference on Software Engineering(ICSE). Piscataway:IEEE, 2022:1456-1468.
|
[8] |
杜李旭弘, 陈杰, 杨小雪. 一种结合GAN的定向口令猜测方案[J]. 西安电子科技大学学报, 2022, 49(3):129-136.
|
|
DU Lixuhong, CHEN Jie, YANG Xiaoxue. Targeted Password Guessing Scheme Combined with GAN[J]. Journal of Xidian University, 2022, 49(3):129-136.
|
[9] |
GODEFROID P, PELEG H, SINGH R. Learn&Fuzz:Machine Learning for Input Fuzzing[C]//Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering(ASE). Piscataway:IEEE, 2017:50-59.
|
[10] |
CHENG L, ZHANG Y, ZHANG Y, et al. Optimizing Seed Inputs in Fuzzing with Machine Learning[C]//2019 IEEE/ACM 41st International Conference on Software Engineering:Companion Proceedings(ICSE-Companion). Piscataway:IEEE, 2019: 244-245.
|
[11] |
NICHOLS N, RAUGAS M, JASPER R, et al. Faster Fuzzing:Reinitialization with Deep Neural Models(2017)[J/OL].[2023-01-08]. https://arxiv.org/abs/1711.02807.
|
[12] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Networks[J]. Communications of the ACM, 2020, 63(11):139-144.
|
[13] |
LYU C, JI S, LI Y, et al. SmartSeed:Smart Seed Generation for Efficient Fuzzing(2019)[J/OL].[2023-01-08]. https://arxiv.org/abs/1807.02606.
|
[14] |
HU Z, SHI J, HUANG Y H, et al. GANFuzz:A GAN-Based Industrial Network Protocol Fuzzing Framework[C]//Proceedings of the 15th ACM International Conference on Computing Frontiers. New York: ACM, 2018:138-145.
|
[15] |
JANG E, GU S, POOLE B. Categorical Reparameterization with Gumbel-Softmax(2017)[J/OL].[2023-05-30]. https://arxiv.org/abs/1611.01144.
|
[16] |
GUO J, LU S, CAI H, et al. Long Text Generation via Adversarial Training with Leaked Information[C]//Proceedings of the 2018 AAAI Conference on Artificial Intelligence. Washington:AAAI, 2018:5141-5148.
|
[17] |
SRIVASTAVA R K, GREFF K, SCHMIDHUBER J. Highway Networks(2015)[J/OL].[2023-01-08]. https://arxiv.org/abs/1505.00387.
|
[18] |
GOOGLE. Google’sFuzzer Test Suite(2022)[EB/OL].[2022-12-28]. https://github.com/google/fuzzer-test-suite.
|
[19] |
WANG M, LIANG J, ZHOU C, et al. Industrial Oriented Evaluation of Fuzzing Techniques[C]//Proceedings of the 14th IEEE Conference on Software Testing,Verification and Validation(ICST). Piscataway:IEEE, 2021:306-317.
|
[20] |
LIU X, YOU W, ZHANG Z, et al. TensileFuzz:Facilitating Seed Input Generation in Fuzzing via String Constraint Solving[C]//Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2022:391-403.
|
[21] |
MENENDEZ H D, CLARK D. Hashing Fuzzing:Introducing Input Diversity to Improve Crash Detection[J]. IEEE Transactions on Software Engineering, 2021, 48(9):3540-3553.
|
[22] |
HERRERA A, GUNADI H, MAGRATH S, et al. Seed Selection for Successful Fuzzing[C]//Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2021:230-243.
|
[23] |
LIANG J, JIANG Y, WANG M, et al. Deepfuzzer:Accelerated Deep Greybox Fuzzing[J]. IEEE Transactions on Dependable and Secure Computing, 2019, 18(6):2675-2688.
|
[24] |
ZALEWSKI M. American Fuzzy Lop(2017)[EB/OL].[2022-12-28]. http://lcamtuf.coredump.cx/afl.
|
[25] |
FIORALDI A, MAIER D, EIBFELDT H, et al. AFL++:Combining Incremental Steps of Fuzzing Research[C]//Proceedings of the 14th USENIX Workshop on Offensive Technologies(WOOT 20). Berkeley:USENIX, 2020:1-12.
|
[26] |
KLEES G, RUEF A, COOPER B, et al. Evaluating Fuzz Testing[C]//Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018:2123-2138.
|
[27] |
YE A, WANG L, ZHAO L, et al. RapidFuzz:Accelerating Fuzzing via Generative Adversarial Networks[J]. Neurocomputing, 2021,460:195-204.
|
[28] |
LI Y, JI S, LIU C, et al. V-Fuzz:Vulnerability Prediction-Assisted Evolutionary Fuzzing for Binary Programs[J]. IEEE Transactions on Cybernetics, 2020, 52(5):3745-3756
|
[29] |
叶嘉羲. 面向软件漏洞自动挖掘的先进模糊测试关键技术研究[D]. 长沙: 国防科技大学, 2020.
|