[1] Kennedy J, Eberhart R. Particle Swarm Optimization[C]//Proc IEEE Int Conf on Neural Networks. Perth: Perth IEEE Press, 1995: 1942-1948.
[2] 王维博, 冯全源. 粒子群算法在阵列天线方向图综合中的应用[J]. 西安电子科技大学学报, 2011, 38(3): 175-180.
Wang Weibo, Feng Quanyuan. Application of PSO Algorithm in Pattern Synthesis for Antenna Arrays[J]. Journal of Xidian University, 2011, 38(3): 175-180.
[3] Shi Yuhui, Eberhart R. Parameter Selection in Particle Swarm Optimization[C]//IEEE Proc of the 7th Annual Conf on Evolutionary Programming. Washington: Springer-Verlag, 1998: 591-600.
[4] Kenneay J, Eherhart R, Sift Yuhui. Swarm Intelligence[M]. San Francisco: Morgan Kaufman, 2001.
[5] 冯翔, 陈国龙, 郭文忠. 粒子群优化算法中加速因子的设置与实验分析[J]. 集美大学学报, 2006, 11(2): 146-151.
Feng Xiang, Chen Guolong, Guo Wenzhong. Settings and Experimental Analysis of Acceleration Coefficients in ParticleSwarm Optimization Algorithm[J]. Journal of Jimei University(Natural Science), 2006, 11(2): 146-151.
[6] 陈贵敏, 贾建援, 韩琪. 粒子群优化算法的惯性权值递减策略研究[J]. 西安交通大学学报, 2006, 40(1): 53-56.
Chen Guimin, Jia Jianyuan, Han Qi. Study on the Strategy of Decreasing Inertia Weight in Particle Swarm Optimization Algorithm[J]. Journal of Xi'an Jiaotong University, 2006, 40(1): 53-56.
[7] 孙越泓, 魏建香, 夏德深. 一种基于粒子对称分布多样性的PSO算法[J]. 模式识别与人工智能, 2010, 23(2): 137-143.
Sun Yuehong, Wei Jianxiang, Xia Deshen. An Improved PSO Based on Diversity of Particle Symmetrical Distribution[J]. Pattern Recognition and Artificial Intelligence, 2010, 23(2): 137-143.
[8] 刘若辰, 焦李成, 雷七峰, 等. 一种新的差分进化约束优化算法[J]. 西安电子科技大学学报, 2011, 38(1): 47-53.
Liu Ruochen, Jiao Licheng, Lei Qifeng, et al. New Differential Evolution Constrianed Optimization Algorithm[J]. Journal of Xidian University, 2011, 38(1): 47-53.
[9] Wang Hui, Qian Feng. Improved PSO-based Multi-Objective Optimization Using Inertia Weight and Acceleration Coefficients Dynamic Changing, Crowding and Mutation[C]//Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing: IEEE, 2008: 4479-4484.
[10] Juan C, Cabrera F, Carlos A, et al. Handling Constraints in Particle Swarm Optimization Using a Small Population Size[C]//MICAI 2007: Advouces in Artificial Intelligence. Aguascalientes: IEEE, 2007: 41-45. |