[1] Gallager R G. Low-Density Parity-Check Codes [J]. IRE Trans on Information Theory, 1962, 8(1): 21-28.
[2] Davey M, MacKay D. Low-density Parity Check Codes over GF(q) [J]. IEEE Communications Letters, 1998, 2(6): 165-167.
[3] 周林, 白宝明, 邵军虎, 等. 多元LDPC码的速率兼容技术研究 [J]. 西安电子科技大学学报, 2011, 38(1): 147-152.
Zhou Lin, Bai Baoming, Shao Junhu, et al. On Nonbinary Rate-compatible LDPC Codes [J]. Journal of Xidian University, 2011, 38(1): 147-152.
[4] Hu Xiaoyu, Eleftheriou E. Binary Representation of Cycle Tanner-graph GF(2b) Codes [C]//IEEE International Conference on Communications: 1. Paris: IEEE, 2004: 528-532.
[5] Zeng Lingqi, Lan Lan, Tai Yingyu, et al. Constructions of Nonbinary Quasi-cyclic LDPC Codes: a Finite Field Approach [J]. IEEE Trans on Communications, 2008, 56(4): 545-554.
[6] Song Hongxin, Cruz J R. Reduced-complexity Decoding of Q-ary LDPC Codes for Magnetic Recording [J]. IEEE Trans on Magnetics, 2003, 39(2): 1081-1087.
[7] Rong Bo, Jiang Tao, Li Xiangming, et al. Combine LDPC Codes over GF(q) with q-ary Modulations for Bandwidth Efficient Transmission [J]. IEEE Trans on Broadcasting, 2008, 54(1): 78-84.
[8] Barnault L, Declercq D. Fast Decoding Algorithm for LDPC over GF(2q) [C]//IEEE Information Theory Workshop Proceedings. Paris: IEEE, 2003: 70-73.
[9] Wymeersch H, Steendam H, Moeneclaey M. Log-domain Decoding of LDPC Codes over GF(q) [C]//IEEE International Conference on Communications: 4. Paris: IEEE, 2004: 772-776.
[10] Declercq D, Fossorier M. Decoding Algorithms for Nonbinary LDPC Codes over GF(q) [J]. IEEE Trans on Communications, 2007, 55(4): 633-643.
[11] Voicila A, Declercq D, Verdier F, et al. Low-complexity Decoding for Non-binary LDPC Codes in High Order Fields [J]. IEEE Trans on Communications, 2010, 58(5): 1365-1375.
[12] Boutillon E, Conde-Canencia L. Bubble Check: a Simplified Algorithm for Elementary Check Node Processing in Extended Min-sum Non-binary LDPC Decoders [J]. Electronics Letters, 2010, 46(9): 633-634.
[13] Xiao Chengshan, Zheng Y R, Beaulieu N C. Novel Sum-of-sinusoids Simulation Models for Rayleigh and Rician Fading Channels [J]. IEEE Trans on Wireless Communications, 2006, 5(12): 3667-3678. |