[1] |
JIA D C, ZHOU P Q. Effective Activating Compensation Logic for DRAMs in 3D-ICs [C]//Proceedings of the 2019 China Semiconductor Technology International Conference. Piscataway: IEEE, 2019: 8755615.
|
[2] |
AHMED F, MILOR L . Analysis and On-chip Monitoring of Gate Oxide Breakdown in SRAM Cells[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2012,20(5):855-864.
|
[3] |
HO C H, KIM S Y, PANAGOPOULOS G D , et al. Statistical TDDB Degradation in Memory Circuits: Bit-cells to Arrays[J]. IEEE Transactions on Electron Devices, 2016,63(6):2384-2390.
|
[4] |
潘少俊 . 集成电路栅介质TDDB失效预警电路设计[D]. 广州: 暨南大学, 2014.
|
[5] |
李新瑞 . 基于TDDB效应的年龄传感器技术研究[D]. 成都: 电子科技大学, 2017.
|
[6] |
LI S, AHN J H, STRONG R D. et al. McPAT: an Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures [C]//Proceedings of the 2009 Annual International Symposium on Microarchitecture. Washington: IEEE Computer Society, 2009: 469-480.
|
[7] |
SKADRON K, STAN M R, SANKARANARAYANAN K , et al. Temperature-aware Microarchitecture: Modeling and Implementation[J]. ACM Transactions on Architecture and Code Optimization, 2004,1(1):94-125.
|
[8] |
WU E, SUÑÉ J, LAROW C. et al. Temperature Dependence of TDDB Voltage Acceleration in High-κ/SiO2 Bilayers and SiO2 Gate Dielectrics [C]//Proceedings of the 2012 IEEE International Electron Devices Meeting. Piscataway: IEEE, 2012: 653-656.
|
[9] |
SUÑÉ J, WU E Y, LAI W L . Statistics of Competing Post-breakdown Failure Modes in Ultrathin MOS Devices[J]. IEEE Transactions on Electron Devices, 2006,53(2):224-234.
|
[10] |
马仲发, 庄奕琪, 杜磊 , 等. 栅氧化层击穿的统一逾渗模型[J]. 西安电子科技大学学报, 2004,31(1):54-58.
|
|
MA Zhongfa, ZHUANG Yiqi, DU Lei , et al. Unified Percolation Model for Gate Oxide Breakdown[J]. Journal of Xidian University, 2004,31(1):54-58.
|
[11] |
MIRANDA E, SUÑÉ J . Electron Transport through Broken Down Ultra-thin SiO2 Layers in MOS Devices[J]. Microelectronics Reliability, 2004,44(1):1-23.
|
[12] |
KIM S Y, HO C H, ROY K . Statistical SBD Modeling and Characterization and Its Impact on SRAM Cells[J]. IEEE Transactions on Electron Devices, 2014,61(1):54-59.
|
[13] |
KIM S Y, PANAGOPOULOS G, HO C H. et al. A Compact SPICE Model for Statistical Post-breakdown Gate Current Increase Due to TDDB [C]//2013 IEEE International Reliability Physics Symposium Proceedings. Piscataway: IEEE, 2013: 6531942.
|
[14] |
JACOB B, NG S, WANG D . Memory Systems: Cache, DRAM, Disk[M]. Boston: Elsevier Academic, 2010: 353-375.
|
[15] |
VOGELSANG T. Understanding the Energy Consumption of Dynamic Random Access Memories [C]//Proceedings of the 2010 Annual International Symposium on Microarchitecture. Washington: IEEE Computer Society, 2010: 363-374.
|
[16] |
LEE D, KHAN S, SUBRAMANIAN L , et al. Design-induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2017,1(1):a26.
|
[17] |
CHANG K K, YAGLIKÇI A G, GHOSE S, et al . Understanding Reduced-voltage Operation in Modern Dram Devices: Experimental Characterization, Analysis, and Mechanisms[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2017,1(1):a9.
|
[18] |
LIU J, JAIYEN B, KIM Y. et al. An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms [C]//Proceedings of the 2013 International Symposium on Computer Architecture. Piscataway: IEEE, 2013: 60-71.
|
[19] |
SUTARIA K, RAMKUMAR A, ZHU R G. et al. BTI-induced Aging under Random Stress Waveforms: Modeling, Simulation and Silicon Validation [C]//Proceedings of the 51st Design Automation Conference. Piscataway: IEEE, 2014: 2593101.
|