Journal of Xidian University ›› 2022, Vol. 49 ›› Issue (2): 198-206.doi: 10.19665/j.issn1001-2400.2022.02.023
• Computer Science and Technology & Cyberspace Security • Previous Articles Next Articles
MA Sike1(),ZHAO Meng1(),SHI Fan1(),SUN Xuguo2(),CHEN Shengyong1()
Received:
2020-09-06
Online:
2022-04-20
Published:
2022-05-31
Contact:
Meng ZHAO
E-mail:sike_ma@126.com;zh_m@tju.edu.cn;shifan@email.tjut.edu.cn;sunxuguo@tmu.edu.cn;sy@ieee.org
CLC Number:
MA Sike,ZHAO Meng,SHI Fan,SUN Xuguo,CHEN Shengyong. Attention driven nuclei segmentation method for cell clusters[J].Journal of Xidian University, 2022, 49(2): 198-206.
"
数据集 | 模型 | D | P | R | F1 |
---|---|---|---|---|---|
胸水细胞团簇数据集 | U-Net | 0.759 0 | 0.525 9 | 0.714 7 | 0.605 9 |
U-Net+Res路径+SE | 0.798 1 | 0.717 9 | 0.696 7 | 0.707 1 | |
U-Net+Res路径+GC | 0.815 3 | 0.669 0 | 0.700 7 | 0.684 5 | |
CRUNet | 0.823 5 | 0.750 5 | 0.697 3 | 0.722 9 | |
BBBC020数据集 | U-Net | 0.830 8 | 0.584 6 | 0.715 2 | 0.643 3 |
U-Net+Res路径+SE | 0.837 4 | 0.698 6 | 0.695 7 | 0.697 1 | |
U-Net+Res路径+GC | 0.842 0 | 0.691 5 | 0.697 4 | 0.694 4 | |
CRUNet | 0.864 1 | 0.752 8 | 0.692 9 | 0.721 4 |
[1] |
SIEGEL R L, MILLER K D, JEMAL A. Cancer Statistics,2020[J]. CA:A Cancer Journal for Clinicians, 2020, 70(1):7-30.
doi: 10.3322/caac.21590 |
[2] |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global Cancer Statistics 2018:GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA:A Cancer Journal for Clinicians, 2018, 68(6):394-424.
doi: 10.3322/caac.21492 |
[3] | 赵晶, 梁隆恺, 何勇军, 等. 复杂背景下的宫颈细胞核分割方法[J]. 哈尔滨理工大学学报, 2019, 24(3):22-28. |
ZHAO Jing, LIANG Longkai, HE Yongjun, et al. The Method of Segmentation of Cervical Nuclei in Complex Background[J]. Journal of Harbin University of Science and Technology, 2019, 24(3):22-28. | |
[4] | 闫欢兰, 陆慧娟, 叶敏超, 等. 结合Sobel算子和Mask R-CNN的肺结节分割[J]. 小型微型计算机系统, 2020, 41(1):161-165. |
YAN Huanlan, LU Huijuan, YE Minchao, et al. Lung Nodule Segmentation Combining Sobel Operator and Mask R-CNN[J]. Journal of Chinese Computer Systems, 2020, 41(1):161-165. | |
[5] |
SHAHUL HAMEED K A, BANUMATHI A, ULAGANATHAN G. P53immunostained Cell Nuclei Segmentation in Tissue Images of Oral Squamous Cell Carcinoma[J]. Signal,Image and Video Processing, 2017, 11:363-370.
doi: 10.1007/s11760-016-0953-y |
[6] |
GAMARRA M, ZUREK E, ESCALANTE H J, et al. Split and Merge Watershed:A Two-Step Method for Cell Segmentation in Fluorescence Microscopy Images[J]. Biomedical Signal Processing and Control, 2019, 53:101575.
doi: 10.1016/j.bspc.2019.101575 |
[7] | 王娅. 血液红细胞图像自适应标记分水岭分割算法[J]. 中国图象图形学报, 2017, 22(12):1779-1787. |
WANG Ya. Adaptive Marked Watershed Segmentation Algorithm for Red Blood Cell Images[J]. Journal of Image and Graphics, 2017, 22(12):1779-1787. | |
[8] | 冯飞, 刘培学, 李丽, 等. FCM融合改进的GSA算法在医学图像分割中的研究[J]. 计算机科学, 2018, 45(A1):252-254. |
FENG Fei, LIU Peixue, LI Li, et al. Study of FCM Fusing Improved Gravitational Search Algorithm in Medical Image Segmentation[J]. Computer Science, 2018, 45(A1):252-254. | |
[9] |
BAI X, SUN C, SUN C, et al. Cell Segmentation Based on FOPSO Combined with Shape Information Improved Intuitionistic FCM[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(1):449-459.
doi: 10.1109/JBHI.2018.2803020 |
[10] | 王莹, 于晓升, 迟剑宁, 等. 双层水平集描述眼底图像视杯视盘分割[J]. 中国图象图形学报, 2020, 25(6):1260-1270. |
WANG Ying, YU Xiaosheng, CHI Jianning, et al. Segmentation of Optic Cup and Disc Based on Two-Layer Level Set Describer in Retinal Fundus Images[J]. Journal of Image and Graphics, 2020, 25(6):1260-1270. | |
[11] |
YU S, LU Y, MOLLOY D. A Dynamic-Shape-Prior Guided Snake Model with Application in Visually Tracking Dense Cell Populations[J]. IEEE Transactions on Image Processing, 2019, 28(3):1513-1527.
doi: 10.1109/TIP.2018.2878331 |
[12] | 陈红, 吴成东, 于晓升, 等. 多描述子活动轮廓模型的医学图像分割[J]. 中国图象图形学报, 2018, 23(3):434-441 |
CHEN Hong, WU Chengdong, YU Xiaosheng, et al. Active Contour Model for Medical Image Segmentation Based on Multiple Descriptors[J]. Journal of Image and Graphics, 2018, 23(3):434-441. | |
[13] |
ZHAO M, WANG H, HAN Y, et al. SEENS:Nuclei Segmentation in Pap Smear Images with Selective Edge Enhancement[J]. Future Generation Computer Systems, 2021, 114:185-194.
doi: 10.1016/j.future.2020.07.045 |
[14] |
NAYLOR P, LAE M, REYAL F, et al. Segmentation of Nuclei in Histopathology Images by Deep Regression of the Distance Map[J]. IEEE Transactions on Medical Imaging, 2019, 38(2):448-459.
doi: 10.1109/TMI.2018.2865709 |
[15] |
ZHAO M, WU A, SONG J, et al. Automatic Screening of Cervical Cells Using Block Image Processing[J]. BioMedical Engineering Online, 2016, 15(1):14.
doi: 10.1186/s12938-016-0131-z |
[16] | CHAURASIA A, CULURCIELLO E. LinkNet:Exploiting Encoder Representations for Efficient Semantic Segmentation[C]// 2017 IEEE Visual Communications and Image Processing (VCIP).Piscataway:IEEE, 2017:1-4. |
[17] | BADRINARAYANAN V, HANDA A, CIPOLLA R. SegNet:A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling (2015)[J/OL].[2015-05-27]. https://arxiv.org/abs/1505.07293. |
[18] | PASZKE A, CHAURASIA A, KIM S, et al. ENet:A Deep Neural Network Architecture for Real-Time Semantic Segmentation (2016)[J/OL].[2016-06-07]. https://arxiv.org/abs/1606.02147. |
[19] | RONNEBERGER O, FISCHER P, BROX T. U-Net:Convolutional Networks for Biomedical Image Segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Heidelberg:Springer, 2015:234-241. |
[20] | MEHTA S, RASTEGARI M, CASPI A, et al. ESPNet:Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation[C]// European Conference on Computer Vision.Heidelberg:Springer, 2018:561-580. |
[21] | MEHTA S, RASTEGARI M, SHAPIRO L, et al. ESPNetv2:A Light-Weight,Power Efficient,and General Purpose Convolutional Neural Network[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE, 2019:9182-9192. |
[22] | MEHTA S, MERCAN E, BARTLETT J, et al. Y-Net:Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Heidelberg:Springer, 2018:893-901. |
[23] | LI X, ZHONG Z, WU J, et al. Expectation-Maximization Attention Networks for Semantic Segmentation[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Piscataway:IEEE, 2019:9166-9175. |
[24] | 杨晓莉, 蔺素珍. 一种注意力机制的多波段图像特征级融合方法[J]. 西安电子科技大学学报, 2020, 47(1):120-127. |
YANG Xiaoli, LIN Suzhen. Method for Multi-Band Image Feature-Level Fusion Based on the Attention Mechanism[J]. Journal of Xidian University, 2020, 47(1):120-127. | |
[25] |
LIAN S, LUO Z, ZHONG Z, et al. Attention Guided U-Net for Accurate Iris Segmentation[J]. Journal of Visual Communication and Image Representation, 2018, 56:296-304.
doi: 10.1016/j.jvcir.2018.10.001 |
[26] |
WANG W, YE C, ZHANG S, et al. Improving Whole-Heart CT Image Segmentation by Attention Mechanism[J]. IEEE Access, 2019, 8:14579-14587.
doi: 10.1109/ACCESS.2019.2961410 |
[27] | BUI TD, WANG L, CHEN J, et al. Multi-Task Learning for Neonatal Brain Segmentation Using 3D Dense-Unet with Dense Attention Guided by Geodesic Distance[C]// International Workshop on Medical Image Learning with Less Labels and Imperfect Data.Heidelberg:Springer, 2019:243-251. |
[28] | AMER A, YE X, ZOLGHARNI M, et al. ResDUnet:Residual Dilated UNet for Left Ventricle Segmentation from Echocardiographic Images[C]// 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC).Piscataway:IEEE, 2020:2019-2022. |
[29] | WOO S, PARK J, LEE J Y, et al. CBAM:Convolutional Block Attention Module[C]// European Conference on Computer Vision.Heidelberg:Springer, 2018:3-19. |
[30] |
IBTEHAZ N, RAHMAN M S. MultiResU-Net:Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation[J]. Neural Networks, 2020, 121:74-87.
doi: 10.1016/j.neunet.2019.08.025 |
[31] | TRAN D, RANGANATH R, BLEI D M. The Variational Gaussian Process (2015)[J/OL].[2015-11-20]. https://arxiv.org/abs/1511.06499. |
[32] |
LI X, CHANG D, TIANT, et al. Large-Margin Regularized Softmax Cross-Entropy Loss[J]. IEEE Access, 2019, 7:19572-19578.
doi: 10.1109/ACCESS.2019.2897692 |
[33] |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-Excitation Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 42(8):2011-2023.
doi: 10.1109/TPAMI.2019.2913372 |
[34] | CAO Y, XU J, LIN S, et al. GCNet:Non-Local Networks MeetSqueeze-Excitation Networks and Beyond[C]// Proceedings of the IEEE International Conference on Computer Vision Workshop.Piscataway:IEEE, 2019:1971-1980. |
[35] | LJOSA V, SOKOLNICKI K L, CARPENTER A E. Annotated High-Throughput Microscopy Image Sets for Validation[J]. Nature Methods, 2013, 10(5):445. |
[36] | ZHANG S, FU H, YAN Y, et al. Attention Guided Network for Retinal Image Segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Heidelberg:Springer, 2019:797-805. |
[37] |
DIAKOGIANNIS F I, WALDNER F, CACCETTA P, et al. ResUNet-a:A Deep Learning Framework for Semantic Segmentation of Remotely Sensed Data[J]. Journal of Photogrammetry and Remote Sensing, 2019, 162:94-114.
doi: 10.1016/j.isprsjprs.2020.01.013 |
[1] | DONG Ruchan,JIAO Licheng,ZHAO Jin,SHEN Weiyan. Application of the deep fusion mechanism in object detection of remote sensing images [J]. Journal of Xidian University, 2021, 48(5): 128-138. |
[2] | NING Yang,DU Jianchao,HAN Shuo,YANG Chuankai. Fire segmentation based on the improved DeeplabV3+ and the analytical method for fire development [J]. Journal of Xidian University, 2021, 48(5): 38-46. |
[3] | ZHOU Peng,YANG Jun. Semantic segmentation of remote sensing images based on neural architecture search [J]. Journal of Xidian University, 2021, 48(5): 47-57. |
[4] | HUI Haisheng,ZHANG Xueying,WU Zelin,LI Fenglian. Method for stroke lesion segmentation using the primary-auxiliary path attention compensation network [J]. Journal of Xidian University, 2021, 48(4): 200-208. |
[5] | CHENG Lei,WANG Yue,TIAN Chunna. Residual attention mechanism for visual tracking [J]. Journal of Xidian University, 2020, 47(6): 148-157. |
[6] | DU Lizhao,XU Yan,ZHANG Wei. Phased smoke detection algorithm using dual network fusion [J]. Journal of Xidian University, 2020, 47(4): 141-148. |
[7] | DANG Jisheng,YANG Jun. 3D model recognition and segmentation based on multi-feature fusion [J]. Journal of Xidian University, 2020, 47(4): 149-157. |
[8] | ZHANG Zhiyuan,DIAO Yinghua. Pedestrian trajectory prediction model with social features and attention [J]. Journal of Xidian University, 2020, 47(1): 10-17. |
[9] | CAO Weidong,LI Jiaqi,WANG Huaichao. Analysis of targeted sentiment by the attention gated convolutional network model [J]. Journal of Xidian University, 2019, 46(6): 30-36. |
[10] | LIU Zhiqiang,ZHANG Mingjin,CHI Yuan,LI Yunsong. Hardware Trojan detection algorithm based on deep learning [J]. Journal of Xidian University, 2019, 46(6): 37-45. |
[11] | WANG Ziyi,SU Yuting,LIU Yanyan,ZHANG Wei. Algorithm for segmentation of smoke using the improved DeeplabV3 network [J]. Journal of Xidian University, 2019, 46(6): 52-59. |
[12] | ZHU Suya,DU Jianchao,LI Yunsong,WANG Xiaopeng. Method for bridge crack detection based on the U-Net convolutional networks [J]. Journal of Xidian University, 2019, 46(4): 35-42. |
[13] | ZHU Li,ZHAO Jun,FU Yingkai,ZHANG Jing,SHEN Hui,ZHANG Shoufeng. Deep learning algorithm for the segmentation of the interested region of an infrared thermal image [J]. Journal of Xidian University, 2019, 46(4): 107-114. |
[14] | CHEN Xiaofan,SHEN Haijie,BIAN Qian,WANG Zhenduo,TIAN Xinzhi. Face image super-resolution with an attention mechanism [J]. Journal of Xidian University, 2019, 46(3): 148-153. |
[15] | MA Shulei,ZHANG Guobin,JIAO Yang,SHI Guangming. Improved method for image caption with global attention mechanism [J]. Journal of Xidian University, 2019, 46(2): 17-22. |
|