[1] |
王淑娟, 付翠轻. 臭氧层破坏的影响因素及环境污染的监测技术研究[J]. 环境科学与管理, 2021, 46(3):111-115.
|
|
WANG Shujuan, FU Cuiqing. Influence of Ozone Layer Pollution Monitoring Technology[J]. Environmental Science and Management, 2021, 46(3):111-115.
|
[2] |
ARAúJO C H D, AROUCHE T S, NUNES D, et al. Interactions of Ozone-Functionalized Activated Charcoal with SARS-Cov-2 Proteases Using Molecular Docking and Dynamics[J]. Journal of Nanoscience and Nanotechnology, 2021, 21(12):6060-6072.
doi: 10.1166/jnn.2021.19525
|
[3] |
张涵, 郑亮, 黄卓, 等. 臭氧水应用于温室土壤消毒的探究[J]. 中国农业大学学报, 2021, 26(11):189-199.
|
|
ZHANG Han, ZHENG Liang, HUANG Zhuo, et al. Study on the Application of Ozone Water in Greenhouse Soil Disinfection[J]. Journal of China Agricultural University, 2021, 26(11):189-199.
|
[4] |
WORLD HEALTH ORGANIZATION. World Health Organization Coronavirus (COVID-19) Dashboard (2021)[EB/OL]. [2021-01-01]. https://covid19.who.int/.
|
[5] |
KAMPF G, TODT D, PFAENDER S, et al. Persistence of Coronaviruses on Inanimate Surfaces and Their Inactivation with Biocidal Agents[J]. Journal of Hospital Infection, 2020, 104(3):246-251.
doi: 10.1016/j.jhin.2020.01.022
|
[6] |
ASHOUR H M, ELKHATIB W F, RAHMAN M M, et al. Insights Into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks[J]. Pathogens, 2020, 9(3):186-200.
doi: 10.3390/pathogens9030186
|
[7] |
UPPAL T, KHAZAIELI A, SNIJDERS A, et al. Inactivation of Human Coronavirus by FATHHOME's Dry Sanitizer Device:Rapid and Eco-Friendly Ozone-Based Disinfection of SARS-CoV-2[J]. Pathogens, 2021, 10(3),339-345.
doi: 10.3390/pathogens10030339
|
[8] |
唐燕萍, 范伟, 沈丽利. 新型冠状病毒肺炎疫情期间臭氧消毒机对病房床单位消毒效果观察[J]. 中国消毒学杂志, 2020, 37(6):420-422.
|
|
TANG Yanping, FAN Wei, SHEN Lili, et al. Observation on Disinfection Effect of Ozone Disinfection Machine on Ward Bed Unit during COVID-19 Epidemic[J]. Chinese Journal of Disinfection, 2020, 37(6):420-422.
|
[9] |
李晓燕, 孟庆瑶, 赵宜范, 等. 生鲜食品冷链过程中消毒杀菌技术的研究进展[J]. 食品工业科技, 2021, 42(11):414-418.
|
|
LI Xiaoyan, MENG Qingyao, ZHAO Yifan, et al. Research Progress of Disinfection and Sterilization in Cold Chain of Fresh Foods[J]. Science and Technology of Food Industry, 2021, 42(11):414-418.
|
[10] |
邱建贺, 翁雯, 周国彪. 一种臭氧发生器的高压电晕电路:CN212572379U[P]. 2021-02-19.
|
[11] |
李海云, 衣颖, 范云双, 等. 硼掺杂金刚石电极电解水制备臭氧技术研究[J]. 应用化工, 2021, 50(5):1254-1258.
|
|
LI Haiyun, YI Ying, FAN Yunshuang, et al. Study on Production of Ozone by Electrolysis of Water with Boron-Doped Diamond Electrodes[J]. Applied Chemical Industry, 2021, 50(5):1254-1258.
|
[12] |
黄艳娥, 贾俊芳. 臭氧的制备及其在水处理中的应用研究进展[J]. 河北化工, 2006, 29(2):6-9.
|
|
HUANG Yan-e, JIA Junfang. Development of Preparation of Ozone and Its Application in Water Treatment[J]. HEBEI CHEMICAL ENGINEERING AND INDUSTRY, 2006, 29(2):6-9.
|
[13] |
汪新民, 石宗明. 臭氧的制备及在水处理中的应用[J]. 安徽化工, 2002, 4:32-34.
|
|
WANG Xinmin, SHI Zongming. Preparation of Ozone and its Application to Water Treatment[J]. ANHUI CHEMICAL INDUSTRY, 2002, 4:32-34.
|
[14] |
张厚, 许志永, 殷雄, 等. 一种改进的非磁化等离子体SO-FDTD算法[J]. 西安电子科技大学学报, 2015, 42(3):168-172.
|
|
ZHANG Hou, XU Zhiyong, YIN Xiong, et al. Improved SO-FDTD Method for Non-Magnetized Plasmas[J]. Journal of Xidian University, 2015, 42(3):168-172.
|
[15] |
YANALLAH K, PONTIGA F, FERNÁNDEZ-RUEDA A, et al. Ozone Generation by Negative Corona Discharge:The Effect of Joule Heating[J]. Journal of Physics D:Applied Physics, 2008, 41(19):195206.
doi: 10.1088/0022-3727/41/19/195206
|
[16] |
POPPENDIECK DG, RIM D, PERSILYAK. Ultrafine Particle Removal and Ozone Generation by In-Duct Electrostatic Precipitators[J]. Environmental Science & Technology, 2014, 48 (3),2067-2074.
doi: 10.1021/es404884p
|
[17] |
LIU L, GUO J, LI J, et al. The Effect of Wire Heating and Configuration on Ozone Emission in A Negative Ion Generator[J]. Journal of Electrostatics, 2000, 48(2):81-91.
doi: 10.1016/S0304-3886(99)00049-2
|
[18] |
OKBUBO T, HAMASAKI S, NOMOTOY, et al. Effect of Corona Wire Heating on the Downstream Ozone Concentration Profiles in An Air-Cleaning Wire-Duct Electrostatic Precipitator[J]. IEEE Transactions on Industry Applications, 1990, 26(3):542-549.
doi: 10.1109/28.55962
|
[19] |
朱益民. 非热放电环境污染治理技术[M]. 北京: 科学出版社, 2013.
|
[20] |
王欲知. 理想繁流放电微观理论[J]. 电子学报, 1964, 3:1-23.
|
|
WANG Yuzhi. The Microscopic Theory of an Ideal Electron Avalanche Discharge[J]. Acta Electronica Sinica, 1964, 3:1-23.
|
[21] |
PONTIGA F, YANALLAH K, FERNÁNDEZ-RUEDA A, et al. Ozone Generation Using Negative Corona Discharge:Numerical Simulation and Comparison with Experiments (2007)[C/OL]. [2007-11-01]. http://neon.dpp.fmph.uniba.sk/ozotech/abstracts/abstract-Pontiga.pdf.
|
[22] |
王晓臣, 朱益民. 多针对板式负电晕放电电极间距确定[J]. 高电压技术, 2003, 29(7):40-43.
|
|
WANG Xiaochen, ZHU Yimin. Determination of Clearance between Electrodes of Multi-needle to Plate for Negative Corona Discharge[J]. High Voltage Engineering, 2003, 29(7):40-43.
|
[23] |
冯启琨, 黄磊, 刘荻帆, 等. 针-板与棒-板电极结构在不同温度下的负电晕放电特性[J]. 高电压技术, 2021, 47(5):1847-1856.
|
|
FENG Qikun, HUANG Lei, LIU Difan, et al. Negative Corona Discharge Characteristics of Needle-Plate and Rod-Plate Structures Under Different Temperatures[J]. High Voltage Engineering, 2021, 47(5):1847-1856.
|
[24] |
易凡, 杜志叶, 黄从鹏, 等. 负极性球板电晕放电下绝缘表面电荷分布特性研究[J]. 高压电器, 2020, 56(9):197-202.
|
|
YI Fan, DU Zhiye, HUANG Congpeng, et al. Study on Charge Distribution Characteristics of Insulation Surface Under Negative Corona in Sphere-Plane Gaps[J]. High Voltage Apparatus, 2020, 56(9):197-202.
|
[25] |
高青青, 王小华, 杨爱军, 等. SF6气体中交流电晕放电电流及带电粒子的时空分布[J]. 高电压技术, 2021, 47(9):3355-3366.
|
|
GAO Qingqing, WANG Xiaohua, YANG Aijun, et al. Discharge Current and Charged Speciesê Temporal-spatial Distribution of AC Corona Discharge in SF6[J]. High Voltage Engineering, 2021, 47(9):3355-3366.
|
[26] |
田毅. 交直流电晕放电微观物理过程的研究[D]. 西安: 西安电子科技大学, 2017.
|
[27] |
伍飞飞, 廖瑞金, 杨丽君, 等. 棒-板电极直流负电晕放电特里切尔脉冲的微观过程分析[J]. 物理学报, 2013, 11:338-347.
|
|
WU Feifei, LIAO Ruijin, YANG Lijun, et al. Numerical Simulation of Trichel Pulse Characteristics in Bar-Plate DC Negative Corona Discharge[J]. Acta Physica Sinica, 2013, 11:338-347.
|
[28] |
徐翱, 金大志, 王亚军, 等. 场致发射影响微间隙气体放电形成的模拟[J]. 高电压技术, 2020, 46(2):715-722.
|
|
XU Ao, JIN Dazhi, WANG Yajun, et al. Simulation on Influence of Field Emission to the Gas Discharge in Micro-Scale Gaps[J]. High Voltage Engineering, 2020, 46(2):715-722.
|
[29] |
BAHRAMI MS. Integer Quantum Hall Effect in Kekulé-Patterned Graphene[J]. CPB Chinese Physics B, 2022, 31(1):17305.
|
[30] |
吴紫露. 薛其坤:追梦圆梦量子反常霍尔效应[J]. 中国高新科技, 2021, 5:5-8.
|
|
WU Zilu. XUE Qikun:Dream Seeking about Quantum Anomalous Hall Effect[J]. China Hi-Technology, 2021, 5:5-8.
|
[31] |
张颖, 胡国静, 向斌. 量子反常霍尔效应研究进展[J]. 低温物理学报, 2021, 43(2):69-88.
|
|
ZHANG Ying, HU Guojing, XIANG Bin. Research Progress of Quantum Anomalous Hall Effect[J]. Low Temperature Physical Letters, 2021, 43(2):69-88.
|
[32] |
JIN L, WANG L, ZHANG X, et al. Fully Spin-Polarized Weyl Fermions and In/Out-of-Plane Quantum Anomalous Hall Effects in A Two-Dimensional d 0 Ferromagnet[J]. Nanoscale, 2021, 13(11):5901-5909.
doi: 10.1039/D0NR07556F
|
[33] |
吴培鹏, 蔡文郁, 唐国栋, 等. 激光测距动态多阈值误差修正技术研究[J]. 电子测量与仪器学报, 2021, 35(7):170-177.
|
|
WU Peipeng, CAI Wenyu, TANG Guodong, et al. Laser Range Measuring System Based on Dynamic Multi-Threshold Error Correction Method[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(7):170-177.
|