Journal of Xidian University ›› 2022, Vol. 49 ›› Issue (6): 139-151.doi: 10.19665/j.issn1001-2400.2022.06.017
• Computer Science and Technology & Artificial Intelligence • Previous Articles Next Articles
ZHANG Weitao1(),JI Xiaofan1(),HUANG Ju2(),LOU Shuntian1()
Received:
2021-12-14
Online:
2022-12-20
Published:
2023-02-09
CLC Number:
ZHANG Weitao,JI Xiaofan,HUANG Ju,LOU Shuntian. Cyclic wiener filtering for compound fault diagnosis of an aero-engine rolling element bearing[J].Journal of Xidian University, 2022, 49(6): 139-151.
[1] | ROBERT B, JEROME A. RollingElement Bearing Diagnostics-A tutorial[J]. Mechanical Systems & Signal Processing, 2011, 25(2):485-520. |
[2] | SMITH W A, RANDALL ROBERT R B. RollingElement Bearing Diagnostics Using the Case Western Reserve University Data:A Benchmark Study[J]. Mechanical Systems & Signal Processing, 2015, 64/65:100-131. |
[3] | ANTONI J, BONNARDOT F, RAAD A, et al. Cyclostationary Modelling of Rotating Machine Vibration Signals[J]. Mechanical Systems & Signal Processing, 2004, 18(6):1285-1314. |
[4] | 王国彪, 何正嘉, 陈雪峰, 等. 机械故障诊断基础研究“何去何从”[J]. 机械工程学报, 2013, 49(1):63-72. |
WANG Guobiao, HE Zhengjia, CHEN Xuefeng, et al. Basic Research on Machinery Fault Diagnosis—What is the Prescription[J]. Journal of Mechanical Engineering, 2013, 49(1):63-72. | |
[5] | 贺王鹏, 孙伟, 苏博, 等. 机械故障诊断的稀疏特征提取方法[J]. 西安电子科技大学学报, 2018, 45(2):154-159. |
HE Wangpeng, SUN Wei, SU Bo, et al. Sparse Feature Extraction Technique and Its Applications to Machinery Fault Diagnosis[J]. Journal of Xidian University, 2018, 45(2):154-159. | |
[6] |
陈是扦, 彭志科, 周鹏. 信号分解及其在机械故障诊断中的应用研究综述[J]. 机械工程学报, 2020, 56(17):91-107.
doi: 10.3901/JME.2020.17.091 |
CHEN Shiqian, PENG Zhike, ZHOU Peng. Review of Signal Decomposition Theory and Its Applications in Machine Fault Diagnosis[J]. Journal of Mechanical Engineering, 2020, 56(17):91-107.
doi: 10.3901/JME.2020.17.091 |
|
[7] | 万志国, 贺王鹏, 廖楠楠, 等. 齿根裂纹与齿面剥落故障的振动响应机理研究[J]. 西安电子科技大学学报, 2021, 48(6):131-137. |
WAN Zhiguo, HE Wangpeng, LIAO Nannan, et al. Study on the Vibration Response Mechanism of Gear Root Crack and Spalling[J]. Journal of Xidian University[J], 2021, 48(6):131-137. | |
[8] |
WANG Y X, LIANG M. Identification ofMultiple Transient Faults Based on the Adaptive Spectral Kurtosis Method[J]. Journal of Sound and Vibration, 2011, 331:470-486.
doi: 10.1016/j.jsv.2011.08.029 |
[9] |
姚德臣, 杨建伟, 程晓卿, 等. 基于多尺度本征模态排列熵和SA-SVM的轴承故障诊断研究[J]. 机械工程学报, 2018, 54(9):168-176.
doi: 10.3901/JME.2018.09.168 |
YAO Dechen, YANGJianwei, CHENG Xiaoqing, et al. Railway Rolling Bearing Fault Diagnosis Based on Muti-scale IMF Permutation Entropy and SA-SVM Classifier[J]. Journal of Mechanical Engineering, 2018, 54(9):168-176.
doi: 10.3901/JME.2018.09.168 |
|
[10] | 程军圣, 于德介, 杨宇. 基于内禀模态奇异值分解和支持向量机的故障诊断方法[J]. 自动化学报, 2006, 32(3):476-480. |
CHENG Junsheng, YU Dejie, YANG Yu. Fault Diagnosis Method Based on Intrinsic Modal Singular Value Decomposition and Support Vector Machine[J]. Acta Automatica Sinica, 2006, 32(3):476-480. | |
[11] | 高明哲, 许爱强, 唐小峰. 基于多核多分类相关向量机的模拟电路故障诊断方法[J]. 自动化学报, 2019, 45(2):203-213. |
GAO Mingzhe, XU Aiqiang, TANG Xiaofeng. Analog Circuit Fault Diagnosis Method Based on Multi-core and Multiclassiflcation Relevant Vector Machine[J]. Acta Automatica Sinica, 2019, 45(2):203-213. | |
[12] |
HAN T, ZHANG L W, YIN Z J, et al. Rolling Bearing Fault Diagnosis with Combined Convolutional Neural Networks and Support Vector Machine[J/OL].[2021-12-01].DOI:10.1016/j.measurement.2021.109022.
doi: 10.1016/j.measurement.2021.109022 |
[13] |
雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5):94-104.
doi: 10.3901/JME.2018.05.094 |
LEI Yaguo, JIA Feng, KONG Detong, et al. Opportunities and Challenges of Machinery Intelligent Fault Diagnosis in Big Data Era[J]. Journal of Mechanical Engineering, 2018, 54(5):94-104.
doi: 10.3901/JME.2018.05.094 |
|
[14] | 毛文涛, 田思雨, 窦智, 等. 一种基于深度迁移学习的滚动轴承早期故障在线检测方法[J]. 自动化学报, 2022, 48(1):302-314. |
MAO Wentao, TIAN Siyu, DOU Zhi, et al. An Online Detection Method for Early Faults of Rolling Bearings Based on Deep Transfer Learning[J]. Acta Automatica Sinica, 2022, 48(1):302-314. | |
[15] | 张建勋, 杜党波, 司小胜, 等. 基于最后逃逸时间的随机退化设备寿命预测方法[J]. 自动化学报, 2022, 48(1):249-260. |
ZHANG Jianxun, DU Dangbo, SI Xiaosheng, et al. Life Prediction Method for Stochastic Degraded Equipment Based on Last Escape Time[J]. Acta Automatica Sinica:, 2022, 48(1):249-260. | |
[16] |
沈长青, 汤盛浩, 江星星, 等. 独立自适应学习率优化深度信念网络在轴承故障诊断中的应用研究[J]. 机械工程学报, 2019, 55(7):81-88.
doi: 10.3901/JME.2019.07.081 |
SHENChangqing, TANG Shenghao, JIANG Xingxing, et al. Bearings Fault Diagnosis Based on Improved Deep Belief Network by Self-individual Adaptive Learning Rate[J]. Journal of Mechanical Engineering, 2019, 55(7):81-88.
doi: 10.3901/JME.2019.07.081 |
|
[17] |
XUE F, ZHANG W M, XUE F, et al. A Novel Intelligent Fault Diagnosis Method of Rolling Bearing Based on Two-Stream Feature Fusion Convolutional Neural Network[J/OL].[2021-12-02].DOI:10.1016/j.measurement.2021.109226.
doi: 10.1016/j.measurement.2021.109226 |
[18] |
MAO W T, CHEN J X, LIANG X H, et al. A New Online Detection Approach for Rolling Bearing Incipient Fault via Self-Adaptive Deep Feature Matching[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(2):443-456.
doi: 10.1109/TIM.2019.2903699 |
[19] |
LI X, ZHANG W, DING Q. Understanding andImproving Deep Learning-Based Rolling Bearing Fault Diagnosis with Attention Mechanism[J]. Signal Processing, 2019, 161:136-154.
doi: 10.1016/j.sigpro.2019.03.019 |
[20] | 明阳, 陈进, 董广明. 基于循环维纳滤波器和包络谱的轴承故障诊断[J]. 振动工程学报, 2010, 23(5):537-540. |
MING Yang, CHENJin, DONG Guangming. Rolling bearing fault diagnosis based on cyclic Wiener filter and envelop spectrum[J]. Journal of Vibration Engineering, 2010, 23(5):537-540. | |
[21] | 张峰, 马舒啸, 石现峰. 基于循环维纳滤波的振动信号去噪算法研究[J]. 计算机技术与发展, 2014, 24(6):49-51. |
ZHANG Feng, MAShuxiao, SHI Xianfeng. Research on Denoising Algorithm of Vibration Signal Based on Cricular Wiener Filtering[J]. Computer Technology and Development, 2014, 24(6):49-51. | |
[22] | 郝芳, 王宏超. 改进循环维纳滤波器算法的滚动轴承复合故障诊断[J]. 中国工程机械学报, 2018, 16(4):371-376. |
HAO Fang, WANGHongchao. Fault Diagnosis of Rolling Element Bearing'compound Faults Basing on Improved Cyclic Wiener Filter Algorithm[J]. Chinese Journal of Construction Machinery, 2018, 16(4):371-376. | |
[23] | Case Western Reserve University, Bearing Data Center, Seeded Fault Test Data[EB/OL]. http://engineering.case.edu/bearingdaacenter/. 2016. |
[1] | CHEN Baojia,HE Wangpeng,HU Jie,WANG Geng,GUO Baolong. Method for diagnosis of data-driven GMC sparse enhancement [J]. Journal of Xidian University, 2019, 46(4): 74-79. |
[2] | HE Wangpeng;SUN Wei;SU Bo;YANG Yunyi;GUO Baolong. Sparse feature extraction technique and its applications to machinery fault diagnosis [J]. Journal of Xidian University, 2018, 45(2): 154-159. |
[3] | WANG Qi;CHEN Xiaoliang. Algorithm for estimating confusion states of flexible manufacturing systems [J]. Journal of Xidian University, 2017, 44(2): 69-74. |
|