Journal of Xidian University ›› 2023, Vol. 50 ›› Issue (1): 137-148.doi: 10.19665/j.issn1001-2400.2023.01.016
Previous Articles Next Articles
CUI Shaoguo(),CHEN Siqi(),DU Xing()
Received:
2022-05-25
Online:
2023-02-20
Published:
2023-03-21
CLC Number:
CUI Shaoguo,CHEN Siqi,DU Xing. Dual graph attention networks model for target sentiment analysis[J].Journal of Xidian University, 2023, 50(1): 137-148.
"
类别 | 模型 | Laptop | Restaurant | ||||
---|---|---|---|---|---|---|---|
Acc | MF1 | Acc | MF1 | Acc | MF1 | ||
基线 | LSTM | 68.64 | 66.84 | 67.71 | 60.69 | 76.96 | 63.35 |
注意力模型 | ATAE-LSTM[ | 68.70 | 77.20 | ||||
IAN[ | 72.10 | 78.60 | |||||
RAM[ | 69.36 | 67.30 | 74.49 | 71.35 | 80.23 | 70.80 | |
PBAN[ | 74.12 | 81.16 | |||||
MGAN[ | 72.54 | 70.81 | 75.39 | 72.47 | 81.25 | 71.94 | |
AOA-LSTM[ | 74.50 | 81.20 | |||||
GCN模型 | ASGCN[ | 72.15 | 70.40 | 75.55 | 71.05 | 80.77 | 72.02 |
MemGCN[ | 72.19 | 70.29 | 74.38 | 70.30 | 81.55 | 72.87 | |
MIGCN[ | 73.31 | 72.12 | 76.59 | 72.44 | 82.32 | 74.31 | |
文中模型 | DGAT | 73.99 | 72.53 | 76.49 | 72.75 | 82.68 | 75.53 |
[1] |
ZHOU J, HUANG J X, CHEN Q, et al. Deep Learning for Aspect-Level Sentiment Classification:Survey,Vision,and Challenges[J]. IEEE Access, 2019, 7:78454-78483.
doi: 10.1109/Access.6287639 |
[2] | 曹卫东, 李嘉琪, 王怀超. 采用注意力门控卷积网络模型的目标情感分析[J]. 西安电子科技大学学报, 2019, 46(6):30-36. |
CAO Weidong, LI Jiaqi, WANG Huaichao. Analysis of Targeted Sentiment by the Attention Gated Convolutional Network Model[J]. Journal of Xidian University, 2019, 46(6):30-36. | |
[3] |
ZHU X, ZHU L, GUO J, et al. GL-GCN:Global and Local Dependency Guided Graph Convolutional Networks for Aspect-Based Sentiment Classification[J]. Expert Systems with Applications, 2021, 186:115712.
doi: 10.1016/j.eswa.2021.115712 |
[4] |
XU Q, ZHU L, DAI T, et al. Aspect-Based Sentiment Classification with Multi-Attention Network[J]. Neurocomputing, 2020, 388:135-143.
doi: 10.1016/j.neucom.2020.01.024 |
[5] | WANG K, SHEN W, YANG Y, et al. Relational Graph Attention Network for Aspect-Based Sentiment Analysis[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Online:ACL, 2020:3229-3238. |
[6] | TANG D, QIN B, FENG X, et al. Effective LSTMs for Target-Dependent Sentiment Classification[C]// Proceedings of COLING 2016,the 26th International Conference on Computational Linguistics:Technical Papers.Osaka:ACL, 2016:3298-3307. |
[7] | GRAVES A, JAITLY N, MOHAMED A. Hybrid Speech Recognition with Deep Bidirectional LSTM[C]// 2013 IEEE Workshop on Automatic Speech Recognition and Understanding.Olomouc:ASRU, 2013:273-278. |
[8] | WANG Y, HUANG M, ZHU X, et al. Attention-Based LSTM for Aspect-Level Sentiment Classification[C]// Proceedings of the 2016Conference on Empirical Methods in Natural Language Processing.Austin:EMNLP, 2016:606-615. |
[9] | MA D, LI S, ZHANG X, et al. Interactive Attention Networks for Aspect-level Sentiment Classification[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence.Melbourne:IJCAI, 2017:4068-4074. |
[10] | CHEN P, SUN Z, BING L, et al. Recurrent Attention Network on Memory for Aspect Sentiment Analysis[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.Copenhagen:EMNLP, 2017:452-461. |
[11] | GU S, ZHANG L, HOU Y, et al. A Position-Aware Bidirectional Attention Network for Aspect-Level Sentiment Analysis[C]// Proceedings of the 27th International Conference on Computational Linguistics.Santa Fe, New Mexico: COLING, 2018:774-784. |
[12] | FAN F, FENG Y, ZHAO D. Multi-grained Attention Network for Aspect-level Sentiment Classification[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.Brussels:EMNLP, 2018:3433-3442. |
[13] | HUANG B, OU Y, CARLEY K M. Aspect Level Sentiment Classification with Attention-Over-Attention Neural Networks[C]// International Conference on Social Computing,Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation. Washington DC: SBP-BRiMS, 2018:197-206. |
[14] | ZHANG C, LI Q, SONG D. Aspect-based Sentiment Classification with Aspect-Specific Graph Convolutional Networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: EMNLP-IJCNLP, 2019:4568-4578. |
[15] | SUN K, ZHANG R, MENSAH S, et al. Aspect-Level Sentiment Analysis via Convolution over Dependency Tree[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: EMNLP-IJCNLP, 2019:5679-5688. |
[16] | HUANG B, CARLEY K M. Syntax-Aware Aspect Level Sentiment Classification with Graph Attention Networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: EMNLP-IJCNLP, 2019:5469-5477. |
[17] | 王光, 李鸿宇, 邱云飞, 等. 基于图卷积记忆网络的方面级情感分类[J]. 中文信息学报, 2021, 35(8):98-106. |
WANG Guang, LI Hongyu, QIU Yunfei, et al. Aspect-Based Sentiment Classification via Memory Graph Convolutional Network[J]. Journal of Chinese Information Processing, 2021, 35(8):98-106. | |
[18] | 王汝言, 陶中原, 赵容剑, 等. 多交互图卷积网络用于方面情感分析[J]. 电子与信息学报, 2022, 44(3):1111-1118. |
WANG Ruyan, TAO Zhongyuan, ZHAO Rongjian, et al. Multi-Interaction Graph Convolutional Networks for Aspect-Level Sentiment Analysis[J]. Journal of Electronics & Information Technology, 2022, 44(3):1111-1118. | |
[19] | PENNINGTON J, SOCHER R, MANNING C D. Glove:Global Vectors for Word Representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.Doha:EMNLP, 2014:1532-1543. |
[20] | 李源, 崔玉爽, 王伟. 一种基于字词双通道网络的文本情感分析方法[J]. 西安电子科技大学学报, 2021, 48(6):179-186. |
LI Yuan, CUI Yushuang, WANG Wei. Method for the Analysis of Text Sentiment Based on the Word Dual-Channel Network[J]. Journal of Xidian University, 2021, 48(6):179-186. | |
[21] | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph Attention Networks[J]. The 6th International Conference on Learning Representations.Vancouver:ICLR, 2018:1-12. |
[22] |
ZHOU J, HUANG J X, HU Q V, et al. Sk-Gcn:Modeling Syntax and Knowledge via Graph Convolutional Network for Aspect-Level Sentiment Classification[J]. Knowledge-Based Systems, 2020, 205:106292.
doi: 10.1016/j.knosys.2020.106292 |
[23] | 蒋浩泉, 张儒清, 郭嘉丰, 等. 图卷积网络与自注意机制在文本分类任务上的对比分析[J]. 中文信息学报, 2021, 35(12):84-93. |
JIANG Haoquan, ZHANG Ruqing, GUO Jiafeng, et al. A Comparative Study of Graph Convolutional Networks and Self-Attention Mechanism on Text Classification[J]. Journal of Chinese Information Processing, 2021, 35(12):84-93. | |
[24] | DONG L, WEI F, TAN C, et al. Adaptive Recursive Neural Network for Target-Dependent Twitter Sentiment Classification[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics(Volume 2:Short Papers).Baltimore:ACL, 2014:49-54. |
[25] | PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. Semeval-2014 Task 4:Aspect Based Sentiment Analysis[C]// The 8th International Workshop on Semantic Evaluation.Dublin:SemEval, 2014:27-35. |
[1] | LIU Bochong,CAI Huaiyu,YANG Shiyuan,LI Haotian,WANG Yi,CHEN Xiaodong. Lightweight semantic segmentation network for autonomous driving scenarios [J]. Journal of Xidian University, 2023, 50(1): 118-128. |
[2] | ZHANG Yali,LI Wenyuan,LI Changlu,DING Shaobo. Method for enhancement of the multi-scale low-light image by combining an attention guidance [J]. Journal of Xidian University, 2023, 50(1): 129-136. |
[3] | ZHANG Qiang,YANG Xinpeng,ZHAO Shixiang,WEI Dongdong,HAN Zhen. Vehicle-target detection network for SAR images based on the attention mechanism [J]. Journal of Xidian University, 2023, 50(1): 36-47. |
[4] | ZHANG Zhaoyu,TIAN Chunna,ZHOU Heng,TIAN Xilan. Online classification jointed RGBT tracking based on the dual attention Siamese network [J]. Journal of Xidian University, 2022, 49(6): 76-85. |
[5] | WANG Kan, WANG Mengyang, LIU Xin, TIAN Guoqiang, LI Chuan, LIU Wei. Event detection by combining self-attention and CNN-BiGRU [J]. Journal of Xidian University, 2022, 49(5): 181-188. |
[6] | LIU Shigang,ZHANG Tong,YANG Jiangong,GE Bao. Progressive dialtion residual network for deep binocular stereo matching [J]. Journal of Xidian University, 2022, 49(5): 175-180. |
[7] | GAO Deyong,KANG Zibing,WANG Song,WANG Yangping. Method to recognize human action by using the convolutional block attention mechanism [J]. Journal of Xidian University, 2022, 49(4): 144-155. |
[8] | LIU Di,GUO Jichang,WANG Yudong,ZHANG Yi. Multi-scale salient object detection network combining an attention mechanism [J]. Journal of Xidian University, 2022, 49(4): 118-126. |
[9] | DU Lixuhong,CHEN Jie,YANG Xiaoxue. Targeted password guessing scheme combined with GAN [J]. Journal of Xidian University, 2022, 49(3): 129-136. |
[10] | MA Sike,ZHAO Meng,SHI Fan,SUN Xuguo,CHEN Shengyong. Attention driven nuclei segmentation method for cell clusters [J]. Journal of Xidian University, 2022, 49(2): 198-206. |
[11] | HU Daiwang,JIAO Yiyuan,LI Yanni. Novel and efficient algorithm for entity relation extraction with the corpus knowledge graph [J]. Journal of Xidian University, 2021, 48(6): 75-83. |
[12] | DONG Ruchan,JIAO Licheng,ZHAO Jin,SHEN Weiyan. Application of the deep fusion mechanism in object detection of remote sensing images [J]. Journal of Xidian University, 2021, 48(5): 128-138. |
[13] | CHENG Lei,WANG Yue,TIAN Chunna. Residual attention mechanism for visual tracking [J]. Journal of Xidian University, 2020, 47(6): 148-157. |
[14] | DU Lizhao,XU Yan,ZHANG Wei. Phased smoke detection algorithm using dual network fusion [J]. Journal of Xidian University, 2020, 47(4): 141-148. |
[15] | ZHANG Zhiyuan,DIAO Yinghua. Pedestrian trajectory prediction model with social features and attention [J]. Journal of Xidian University, 2020, 47(1): 10-17. |
|