Journal of Xidian University ›› 2023, Vol. 50 ›› Issue (1): 168-176.doi: 10.19665/j.issn1001-2400.2023.01.019
Previous Articles Next Articles
GAN Ping1(),NONG Liping2,3(),ZHANG Wenhui4(),LIN Jiming1,2(),WANG Junyi1()
Received:
2021-10-12
Online:
2023-02-20
Published:
2023-03-21
CLC Number:
GAN Ping, NONG Liping, ZHANG Wenhui, LIN Jiming, WANG Junyi. Attention spatial-temporal graph neural network for traffic prediction[J].Journal of Xidian University, 2023, 50(1): 168-176.
"
模型 | PeMSD7(M)(15/30/60 min) | ||
---|---|---|---|
MAE | RMSE | MAPE/% | |
HA | 4.01 | 7.20 | 10.61 |
ARIMA | 5.55/5.86/6.75 | 9.00/9.13/9.72 | 12.92/13.94/16.92 |
FC-LSTM | 3.57/3.94/4.35 | 6.20/7.03/7.93 | 8.60/9.55/10.61 |
STGCN | 2.25/3.03/4.01 | 4.04/5.70/7.55 | 5.26/7.33/9.78 |
GraphWaveNet | 2.14/2.80/3.42 | 4.01/5.48/6.72 | 4.93/6.89/8.57 |
LSGCN | 2.22/2.96/3.81 | 3.98/5.47/7.09 | 5.14/7.18//9.60 |
STTN | 2.14/2.70/3.31 | 4.04/5.37/6.51 | 5.05/6.68/7.98 |
AST-GCN | 1.89/2.42/3.09 | 3.36/4.37/5.46 | 4.14/5.32/6.88 |
模型 | PEMS-BAY(15/30/60 min) | ||
MAE | RMSE | MAPE/% | |
HA | 2.88 | 5.59 | 6.80 |
ARIMA | 1.62/2.23/3.38 | 3.30/4.76/6.50 | 3.50/5.40/8.30 |
FC-LSTM | 2.05/2.20/2.37 | 4.19/4.55/4.96 | 4.80/5.20/5.70 |
STGCN | 1.39/1.84/2.42 | 2.92/4.12/5.33 | 3.00/4.22/5.58 |
GraphWaveNet | 1.30/1.63/1.95 | 2.73/3.67/4.63 | 2.74/3.70/4.52 |
STTN | 1.36/1.67/1.95 | 2.87/3.79/4.50 | 2.89/3.78/4.58 |
AST-GCN | 1.22/1.52/1.86 | 2.54/3.20/3.99 | 2.39/3.12/3.75 |
[1] |
HODGE V J, KRISHNAN R, AUSTIN J, et al. Short-Term Prediction of Traffic Flow Using a Binary Neural Network[J]. Neural Computing and Applications, 2014, 25(8):1639-1655.
doi: 10.1007/s00521-014-1646-5 |
[2] | SUN H, ZHANG C, RAN B. Interval Prediction for Traffic Time Series Using Local Linear Predictor[C]// Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems.Piscataway:IEEE, 2004:410-415. |
[3] |
OKUTANI I, STEPHANEDES Y J. Dynamic Prediction of Traffic Volume Through Kalman Filtering Theory[J]. Transportation Research Part B:Methodological, 1984, 18(1):1-11.
doi: 10.1016/0191-2615(84)90002-X |
[4] | FU G, HAN G, LU F, et al. Short-Term Traffic Flow Forecasting Model Based on Support Vector Machine Regression[J]. Journal of South China University of Technology :Natural Science Edition, 2013, 41(9):71-76. |
[5] |
YIN H, WONG S C, XU J, et al. Urban Traffic Flow Prediction Using a Fuzzy-Neural Approach[J]. Transportation Research Part C:Emerging Technologies, 2002, 10(2):85-98.
doi: 10.1016/S0968-090X(01)00004-3 |
[6] |
SUN S, ZHANG C, YU G. A Bayesian Network Approach to Traffic Flow Forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(1):124-132.
doi: 10.1109/TITS.2006.869623 |
[7] |
NONG L P, WANG J Y, LIN J M, et al. Hypergraph Wavelet Neural Networks for 3D Object Classification[J]. Neurocomputing, 2021, 463:580-595.
doi: 10.1016/j.neucom.2021.08.006 |
[8] | YU B, YIN H, ZHU Z. Spatio-Temporal Graph Convolutional Networks:A Deep Learning Framework for Traffic Forecasting[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2018:3634-3640. |
[9] | LI Y, YU R, SHAHABI C, et al. Diffusion Convolutional Recurrent Neural Network:Data-Driven Traffic Forecasting[C/OL].[2018-2-22]. https://arxiv.org/abs/1707.01926v2. |
[10] |
ZHAO L, SONG Y, ZHANG C, et al. T-GCN:A Temporal Graph Convolutional Network for Traffic Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9):3848-3858.
doi: 10.1109/TITS.6979 |
[11] | GUO S, LIN Y, FENG N, et al. Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019, 33(1):922-929. |
[12] | SONG C, LIN Y, GUO S, et al. Spatial-Temporal Synchronous Graph Convolutional Networks:A New Framework for Spatial-Temporal Network Data Forecasting[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020:914-921. |
[13] | VELIKOVI P, CUCURULL G, CASANOVA A, et al. Graph Attention Networks[C/OL].[2018-02-4]. https://arxiv.org/abs/1710.10903. |
[14] | ZHU J, SONG Y, ZHAO L, et al. A3T-GCN:Attention Temporal Graph Convolutional Network for Traffic Forecasting[C/OL].[2020-06-20]. https://arxiv.org/abs/2006.11583. |
[15] | WU Z, PAN S, LONG G, et al. Graph Wavenet for Deep Spatial-Temporal Graph Modeling[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2019:1907-1913. |
[16] |
LIU W, WU G, REN F, et al. DFF-ResNet:An Insect Pest Recognition Model Based on Residual Networks[J]. Big Data Mining and Analytics, 2020, 3(4):300-310.
doi: 10.26599/BDMA.2020.9020021 |
[17] | HUANG R, HUANG C, LIU Y, et al. LSGCN:Long Short-Term Traffic Prediction with Graph Convolutional Networks[C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann. 2020:2355-2361. |
[18] | XU M, DAI W, LIU C, et al. Spatial-Temporal Transformer Networks for Traffic Flow Forecasting[J/OL].[2020-01-14]. https://arxiv.org/abs/2001.02908. |
[19] | SUTSKEVER I, VINYALS O, LE Q V. Sequence to Sequence Learning with Neural Networks[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014:3104-3112. |
[1] | LIU Bochong, CAI Huaiyu, YANG Shiyuan, LI Haotian, WANG Yi, CHEN Xiaodong. Lightweight semantic segmentation network for autonomous driving scenarios [J]. Journal of Xidian University, 2023, 50(1): 118-128. |
[2] | ZHANG Yali, LI Wenyuan, LI Changlu, DING Shaobo. Method for enhancement of the multi-scale low-light image by combining an attention guidance [J]. Journal of Xidian University, 2023, 50(1): 129-136. |
[3] | CUI Shaoguo,CHEN Siqi,DU Xing. Dual graph attention networks model for target sentiment analysis [J]. Journal of Xidian University, 2023, 50(1): 137-148. |
[4] | ZHANG Qiang, YANG Xinpeng, ZHAO Shixiang, WEI Dongdong, HAN Zhen. Vehicle-target detection network for SAR images based on the attention mechanism [J]. Journal of Xidian University, 2023, 50(1): 36-47. |
[5] | LIU Xiaowen, GUO Jichang, ZHENG Sida. Weakly-supervised salient object detection with the multi-scale progressive network [J]. Journal of Xidian University, 2023, 50(1): 48-57. |
[6] | CHEN Yong,NIU Kaiyu,KANG Jie. Handover algorithm for a high-speed railway based on the LSTM recurrent neural network [J]. Journal of Xidian University, 2023, 50(1): 76-84. |
[7] | QIN Rui,ZHANG Wei. Multi-scale fire detection algorithm with an anchor free structure [J]. Journal of Xidian University, 2022, 49(6): 111-119. |
[8] | ZHANG Zhaoyu,TIAN Chunna,ZHOU Heng,TIAN Xilan. Online classification jointed RGBT tracking based on the dual attention Siamese network [J]. Journal of Xidian University, 2022, 49(6): 76-85. |
[9] | CHEN Yong,ZHAO Mengxue,TAO Meifeng. Mural inpainting algorithm for group sparse based on multi-scale contourlet transform decomposition [J]. Journal of Xidian University, 2022, 49(6): 120-128. |
[10] | WU Kaijun, MEI Yuan. VAE-Fuse:an unsupervised multi-focus fusion model [J]. Journal of Xidian University, 2022, 49(6): 129-138. |
[11] | LI Jiaojiao, LIU Zhiqiang, SONG Rui, LI Yunsong. Algorithm for segmentation of remote sensing imagery using the improved Unet [J]. Journal of Xidian University, 2022, 49(6): 67-75. |
[12] | FENG Xiangchu, WEI Lili. Bilevel optimization approach for annealing parameter estimation in the image denoising problem [J]. Journal of Xidian University, 2022, 49(6): 86-94. |
[13] | LIU Shigang,ZHANG Tong,YANG Jiangong,GE Bao. Progressive dialtion residual network for deep binocular stereo matching [J]. Journal of Xidian University, 2022, 49(5): 175-180. |
[14] | ZHANG Dan,ZHOU Shuisheng,ZHANG Wenmeng. New intuitionistic fuzzy least squares support vector machine [J]. Journal of Xidian University, 2022, 49(5): 125-136. |
[15] | LI Yueyan, CHENG Peitao, DU Shuxing. Lightweight object detection algorithm based on the improved CenterNet [J]. Journal of Xidian University, 2022, 49(5): 137-144. |
|