Journal of Xidian University ›› 2024, Vol. 51 ›› Issue (2): 182-195.doi: 10.19665/j.issn1001-2400.20230211
• Computer Science and Technology & Cyberspace Security • Previous Articles Next Articles
ZHAI Fengwen(), SUN Fanglin(), JIN Jing()
Received:
2022-11-28
Online:
2024-04-20
Published:
2023-10-12
Contact:
SUN Fanglin
E-mail:zhaifw@mail.lzjtu.cn;ntusfl@163.com;jinjing@mail.lzjtu.cn
CLC Number:
ZHAI Fengwen, SUN Fanglin, JIN Jing. Study of EEG classification of depression by multi-scale convolution combined with the Transformer[J].Journal of Xidian University, 2024, 51(2): 182-195.
"
验证方法 | 模型 | Acc/% | F1/% | Sens/% | Spec/% | kappa |
---|---|---|---|---|---|---|
SiNet | 92.62±1.37 | 92.21±1.49 | 92.51±2.36 | 92.72±1.63 | 0.852 0±0.027 6 | |
MsNet | 94.76±0.70 | 94.43±0.78 | 94.09±2.00 | 95.36±1.56 | 0.894 8±0.014 1 | |
10-Fold CV | MGTNet | 96.10±0.59 | 95.91±0.62 | 96.69±1.21 | 95.58±1.19 | 0.921 9±0.011 8 |
MTCNet | 97.44±0.37 | 97.29±0.39 | 97.19±0.58 | 97.67±0.62 | 0.948 7±0.007 5 | |
MGTTCNet | 98.53±0.40 | 98.45±0.42 | 98.73±0.51 | 98.36±0.66 | 0.970 6±0.008 1 | |
MTCNGTNet | 98.24±0.48 | 98.14±0.45 | 98.28±0.49 | 98.20±0.58 | 0.964 7±0.007 2 |
"
验证方法 | 频带 | Acc/% | F1/% | Sens/% | Spec/% | kappa |
---|---|---|---|---|---|---|
delta | 89.95±0.48 | 89.19±0.52 | 87.69±2.54 | 91.97±2.53 | 0.798 0±0.009 4 | |
theta | 94.10±0.80 | 93.70±0.87 | 93.24±1.67 | 94.82±1.29 | 0.881 6±0.016 1 | |
10-Fold CV | alpha | 96.79±0.41 | 96.81±0.44 | 96.44±0.76 | 97.49±0.66 | 0.939 6±0.008 2 |
beta | 97.62±0.35 | 97.53±0.35 | 97.71±0.82 | 97.54±0.95 | 0.952 4±0.006 9 | |
gamma | 97.21±0.34 | 97.07±0.36 | 96.18±0.75 | 97.81±0.73 | 0.944 1±0.006 9 |
"
验证方法 | 模型名称 | Acc/% | F1/% | Sens/% | Spec/% | kappa |
---|---|---|---|---|---|---|
EEGNet-8,2[ | 96.60±0.49 | 96.41±0.52 | 96.10±0.77 | 97.08±0.78 | 0.932 1±0.009 9 | |
EEG-TCNet[ | 96.47±0.39 | 96.28±0.41 | 96.61±0.67 | 96.35±0.79 | 0.929 2±0.007 8 | |
10-Fold CV | EEG-Inception[ | 96.57±0.91 | 96.35±0.96 | 95.79±1.80 | 97.27±1.69 | 0.933 1±0.018 2 |
EEG-ITNet[ | 94.74±0.85 | 94.45±0.87 | 94.62±2.00 | 94.86±2.30 | 0.894 6±0.017 0 | |
MGTTCNet | 98.53±0.40 | 98.45±0.42 | 98.73±0.51 | 98.36±0.66 | 0.970 6±0.008 1 |
"
文献 | 年份 | 通道数 | 特征 | 分类模型 | Acc/% | F1/% | Sens/% | Spec/% |
---|---|---|---|---|---|---|---|---|
文献[ | 2020 | 16 | 混合特征 | LR | 82.31 | |||
文献[ | 2020 | 3 | 时域特征 | 1DCNN | 75.29 | 71.60 | 66.20 | 83.00 |
文献[ | 2021 | 128 | 幅值和频率 | ITD+L-TCN | 86.87 | 90.51 | 90.15 | 83.83 |
文献[ | 2022 | 128 | 脑频谱图 | CNN+GRU | 90.62 | 88.79 | 87.81 | 87.48 |
文献[ | 2022 | 73 | 空间-频域特征 | SparNet | 94.37 | 94.40 | 95.07 | 93.66 |
文中 | 2022 | 16 | 自动提取特征 | MGTTCNet | 98.53 | 98.45 | 98.73 | 98.36 |
[1] | KARUNARATHNE A, GUNNELL D, KONRADSEN F, et al. How Many Premature Deaths From Pesticide Suicide Have Occurred Since the Agricultural Green Revolution?[J]. Clinical Toxicology, 2019, 58(4):227-232. |
[2] | FRIEDRICH M J. Depressionis the Leading Cause of Disability Around the World[J]. JAMA, 2017, 317(15):1517. |
[3] | SAEIDI M, KARWOWSKI W, FARAHANI F, et al. Neural Decoding of EEG Signals with Machine Learning:A Systematic Review[J]. Brain Sciences, 2021(11):1525. |
[4] | SCHIRRMEISTER R, SPRINGENBERG J, FIEDERER L, et al. Deep Learning with Convolutional Neural Networks for EEG Decoding and Visualization[J]. Human Brain Mapping, 2017,38:5391-5420. |
[5] | ACHARYA U, RAJENDRA S, YUKI H, et al. Automated EEG-Based Screening of Depression Using Deep Convolutional Neural Network[J]. Computer Methods and Programs in Biomedicine, 2018,161:103-113. |
[6] | KARAKUS B, YILDIRIM Ö, TALO M, et al. Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals[J]. Journal of Medical Systems, 2019,43:1-12. |
[7] | UYULAN Ç, ERGÜZEL T, et al. UNUBOLH, Major Depressive Disorder Classification Based on Different Convolutional Neural Network Models:Deep Learning Approach[J]. Clinical EEG and Neuroscience, 2020,52:38-51. |
[8] | DAN Y, ZHAO L L, SONG X W, et al. Automated Detection of Clinical Depression Based on Convolution Neural Network Model[J]. Biomedical Engineering/Biomedizinische Technik, 2022,67:131-142. |
[9] | LAWHERN V J, SOLON A J, WAYTOWICH N R, et al. EEGNet:A Compact Convolutional Network for EEG-Based Brain-Computer Interfaces[J]. Journal of Neural Engineering, 2018, 15(5):1-17. |
[10] | LIU W, JIA K B, WANG Z Z, et al. A Depression Prediction Algorithm Based on Spatiotemporal Feature of EEG Signal[J]. Brain Sciences, 2022, 12(5):630. |
[11] | BAI S, KOLTER J, KOLTUN V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling(2022)[J/OL].[2022-11-13]. https://arxiv.org/abs/1803.01271. |
[12] | INGOLFSSON T M, HERSCHE M, WANG X, et al. EEG-TCNet:An Accurate Temporal Convolutional Network for Embedded Motor-Imagery Brain-Machine Interfaces[C]//Proceedings of the 2020 IEEE International Conference on Systems,Man,and Cybernetics(SMC). Piscataway:IEEE, 2020:2958-2965. |
[13] | HASHEMPOUR S, BOOSTANI R, MOHAMMADI M, et al. Continuous Scoring of Depressionfrom EEG Signals via a Hybrid of Convolutional Neural Networks[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022,30:176-183. |
[14] | 王怡忻, 朱湘茹, 杨利军. 融合共空间模式与脑网络特征的EEG抑郁识别[J]. 计算机工程与应用, 2021, 58(22):150-158. |
WANG Yixin, ZHU Xiangru, YANG Lijun. EEG Depression Recognition Based on Feature Fusion of Common Spatial Pattern and Brain Connectivity[J]. Computer Engineering and Applications, 2021, 58(22):150-158. | |
[15] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All You Need[C]// Proceedings of the in Advances in Neural Information Processing Systems(NIPS). San Diego: NIPS, 2017:5998-6008. |
[16] | SONG Y H, JIA X Y, YANG L, et al. Transformer-Based Spatial-Temporal Feature Learning for EEG Decoding(2022)[J/OL].[2022-11-13]. https://arxiv.org/abs/2106.11170. |
[17] | CASAL R, PERSIA L, SCHLOTTHAUER G. Temporal Convolutional Networks and Transformers for Classifying the Sleep Stage in Awake or Asleep Using Pulse Oximetry Signals[J]. Journal of Computational Science, 2022,59:101544. |
[18] | MA Y, SONG Y, GAO F. A Novel Hybrid CNN-Transformer Model for EEG Motor Imagery Classification[C]// Proceedings of the IEEE International Joint Conference on Neural Network(IJCNN). Piscataway:IEEE, 2022:1-8. |
[19] | 张静, 张雪英, 陈桂军, 等. 结合3D-CNN和频-空注意力机制的EEG情感识别[J]. 西安电子科技大学学报, 2022, 49(3):191-198. |
ZHANG Jing, ZHANG Xueying, CHEN Guijun, et al. EEG Emotion Recognition Based on the 3D-CNN and Spatial-Frequency Attention Mechanism[J]. Journal of Xidian University, 2022, 49(3):191-198. | |
[20] | DAUPHIN Y, FAN A, AULI M, et al. Language Modeling with Gated Convolutional Networks[C]// Proceedings of the 34th International Conference on Machine Learning(ICML). New York: ACM, 2017:933-941. |
[21] | HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway:IEEE, 2016:770-778. |
[22] | CAI H S, YUAN Z Q, GAO Y P, et al. A Multi-Modal Open Dataset for Mental-Disorder Analysis[J]. Scientific Data, 2022,9:178-188. |
[23] | ARBANAS G. Diagnostic and Statistical Manual of Mental Disorders(DSM-5)[J]. Alcoholism and psychiatry research, 2015,51:61-64. |
[24] | SUN S T, LI J X, CHEN H Y, et al. A Study of Resting-State EEG Biomarkers for Depression Recognition(2022)[J/OL].[2022-10-23]. https://arxiv.org/abs/2002.11039. |
[25] | SEAL A, BAJPAI R, AGNIHOTRI J, et al. DeprNet:A Deep Convolution Neural Network Framework for Detecting Depression Using EEG[J]. IEEE Transactions on Instrumentation and Measurement, 2021,70:1-13. |
[26] | JAS M, ENGEMANN D, BEKHTI Y, et al. Autoreject:Automated Artifact Rejection for MEG and EEG Data[J]. Neuroimage, 2016,159:417-429. |
[27] | HASANZADEH F, MOHEBBI M, ROSTAMI R. Graph Theory Analysis of Directed Functional Brain Networks in Major Depressive Disorder Based on EEG Signal[J]. Journal of Neural Engineering, 2020, 17(2):026010. |
[28] | SUN S T, CHEN H Y, SHAO X X, et al. EEG Based Depression Recognition by Combining Functional Brain Network and Traditional Biomarkers[C]//Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine(BIBM). Piscataway:IEEE, 2020:2074-2081. |
[29] | 尚照岩, 乔晓艳. 轻度抑郁症脑电特征分析与机器识别研究[J]. 测试技术学报, 2022, 36(6):498-505. |
SHANG Zhaoyan, QIAO Xiaoyan. Study on Analysis and Recognition of EEG Characteristics of Mild Depression[J]. Journal of Test and Measurement Technology, 2022, 36(6):498-505. | |
[30] | SANTAMARIA V E, MARTINEZ C V, VAQUERIZO V F, et al. EEG-Inception:A Novel Deep Convolutional Neural Network for Assistive ERP-Based Brain-Computer Interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(12):2773-2782. |
[31] | SALAMI A, ANDREU-PEREZ J, GILLMEISTER H. EEG-ITNet:An Explainable Inception Temporal Convolutional Network for Motor Imagery Classification[J]. IEEE Access, 2022,10:36672-36685. |
[32] | ZHANG X W, LI J L, HOU K C, et al. EEG-Based Depression Detection Using Convolutional Neural Network with Demographic Attention Mechanism[C]//Proceedings of the annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC). Piscataway:IEEE, 2020:128-133. |
[33] | WANG Y X, LIU F R, YANG L J. EEG-Based Depression Recognition Using Intrinsic Time-scale Decomposition and Temporal Convolution Network[C]//Proceedings of the International Conference on Biological Information and Biomedical Engineering(BIBE). New York: ACM, 2021:1-6. |
[34] | DENG X, FAN X F, LV X W, et al. SparNet:A Convolutional Neural Network for EEG Space-Frequency Feature Learning and Depression Discrimination[J]. Frontiers in Neuroinformatics, 2022,16:914823. |
[35] | MAATEN L, HINTON G. Visualizing Data Using t-SNE[J]. Journal of Machine Learning Research, 2008,9:2579-2605. |
[1] | LIU Zhenyan, ZHANG Hua, LIU Yong, YANG Libo, WANG Mengdi. Efficient seed generation method for software fuzzing [J]. Journal of Xidian University, 2024, 51(2): 126-136. |
[2] | DING Xinmiao, WANG Jiaxing, GUO Wen. Three-dimensional attention-enhanced algorithm for violence scene detection [J]. Journal of Xidian University, 2024, 51(1): 114-124. |
[3] | LIU Bochong, CAI Huaiyu, WANG Yi, CHEN Xiaodong. Self-supervised contrastive representation learning for semantic segmentation [J]. Journal of Xidian University, 2024, 51(1): 125-134. |
[4] | ZHANG Xinyu, LIANG Yu, ZHANG Wei. Real-time smoke segmentation algorithm combining global and local information [J]. Journal of Xidian University, 2024, 51(1): 147-156. |
[5] | XIONG Jingwei, PAN Jifei, BI Daping, DU Mingyang. Multi-scale convolutional attention network for radar behavior recognition [J]. Journal of Xidian University, 2023, 50(6): 62-74. |
[6] | HOU Yue,ZHENG Xin,HAN Chengyan. Traffic flow prediction method for integrating longitudinal and horizontal spatiotemporal characteristics [J]. Journal of Xidian University, 2023, 50(5): 65-74. |
[7] | FAN Wentong,LI Zhenyu,ZHANG Tao,LUO Xiangyang. JPEG image steganalysis based on deep extraction of stego noise [J]. Journal of Xidian University, 2023, 50(4): 157-169. |
[8] | WANG Yuhua,GAO Sheng,ZHU Jianming,HUANG Chen. Efficient deep learning scheme with adaptive differential privacy [J]. Journal of Xidian University, 2023, 50(4): 54-64. |
[9] | WANG Juan,LIU Zishan,WU Minghu,CHEN Guanhai,GUO Liquan. Multi-scale object detection algorithm combined with super-resolution reconstruction technology [J]. Journal of Xidian University, 2023, 50(3): 122-131. |
[10] | XIE Wen,HUA Wenqiang,JIAO Licheng,WANG Ruonan. Review on polarimetric SAR terrain classification methods using deep learning [J]. Journal of Xidian University, 2023, 50(3): 151-170. |
[11] | ZHOU Shuo,ZHOU Yiqing,ZHANG Chong,XING Wang. ResNet enabled joint channel estimation and signal detection for OTFS [J]. Journal of Xidian University, 2023, 50(3): 19-30. |
[12] | WANG Keyan,CHENG Jicong,HUANG Shirui,CAI Kunlun,WANG Weiran,LI Yunsong. Low-light image dehazing network with aggregated context-aware attention [J]. Journal of Xidian University, 2023, 50(2): 23-32. |
[13] | LIU Bochong, CAI Huaiyu, YANG Shiyuan, LI Haotian, WANG Yi, CHEN Xiaodong. Lightweight semantic segmentation network for autonomous driving scenarios [J]. Journal of Xidian University, 2023, 50(1): 118-128. |
[14] | ZHANG Qiang, YANG Xinpeng, ZHAO Shixiang, WEI Dongdong, HAN Zhen. Vehicle-target detection network for SAR images based on the attention mechanism [J]. Journal of Xidian University, 2023, 50(1): 36-47. |
[15] | LIU Xiaowen, GUO Jichang, ZHENG Sida. Weakly-supervised salient object detection with the multi-scale progressive network [J]. Journal of Xidian University, 2023, 50(1): 48-57. |
|