Journal of Xidian University ›› 2024, Vol. 51 ›› Issue (4): 206-225.doi: 10.19665/j.issn1001-2400.20231202
• Computer Science and Technology & Cyberspace Security • Previous Articles Next Articles
JIANG Laiwei1(), GU Haiyang1(), XIE Lixia2(), YANG Hongyu1()
Received:
2023-08-26
Online:
2024-08-20
Published:
2023-12-27
Contact:
XIE Lixia
E-mail:lwjiang@cauc.edu.cn;2506011473@qq.com;lxxie@cauc.edu.cn;yhyxlx@hotmail.com
CLC Number:
JIANG Laiwei, GU Haiyang, XIE Lixia, YANG Hongyu. Research on the application of machine learning to intrusion detection in WSN[J].Journal of Xidian University, 2024, 51(4): 206-225.
"
攻击类型 | 所属层 | 攻击特点 |
---|---|---|
干扰攻击 | 物理层 | 通过产生干扰信号来干扰、破坏或阻止设备的正常通信。 |
耗尽攻击 | 链路层 | 通过消耗目标资源或节点能量使其无法正常运行,主要手段为在报文传输过程中创建路由环路或延长传输路径。 |
碰撞攻击 | 链路层 | 在通信过程中通过干扰导致数据包碰撞或通信失败。这种攻击不会消耗攻击者太多的能量,但是会导致网络中断,且难以被检测。 |
漏洞攻击 | 网络层 | 攻击发生在消息路由过程中,簇头是其攻击的主要目标。该攻击可能导致数据泄露、系统瘫痪、节点被劫持等后果。 |
Sybil攻击 | 网络层 | 通过从单个当前节点创建多个节点id模拟传感器节点的存在,从而获取非法访问和控制权。 |
黑洞攻击 | 网络层 | 攻击者扮演簇头的角色,在BS之前接收传递的数据包并将所有数据包丢弃,从而使数据包无法传输到正确的目的地。 |
灰洞攻击 | 网络层 | 攻击者将对其他节点发出自己作为簇头节点的消息,从而在接收到其他节点的数据包后选择性丢弃一些数据包。 |
调度攻击 | 网络层 | 通过干扰、修改调度的方式或顺序使数据包发生冲突,从而导致数据丢失。 |
洪泛攻击 | 传输层 | 通过向传感器发送大量错误或无效的数据包从而消耗节点能量和网络资源。 |
"
文献 | 改进/使用传统 机器学习技术 | 数据预 处理/处理 | 特征选择 /提取 | 公开数据集 | 性能指标 |
---|---|---|---|---|---|
[ | MSVM | IMOPSO | KDD CUP’99、 CIDD、 NSL-KDD 19 | Acc,FP、Number of Features | |
[ | FSVM | 归一化,PCA | DKFCM | WSN-DS | TP、FP、TN、FN、Precision、FPR、FNR |
[ | SVM | TP、FP、TN、FN、Acc、Recall、Precision | |||
[ | SVM | 归一化 | GWO | NSL-KDD’99 | Acc、Number of Features、Execution time、DR、FAR |
[ | SVM | RBM | NSL-KDD | Acc、DR、FAR、MAR | |
[ | SVM | TP、FP、TN、FN、PPV、TPR、OCA | |||
[ | SVM | KDD CUP’99 | Acc、TPR、FNR、DR | ||
[ | KNN | UNSW-NB15 | Acc、FPR、ROC、CPU running time | ||
[ | KNN | 数值化、归一化 | WSN-DS | TP、FP、TN、FN、Acc、FPR、DR、fitness | |
[ | KNN | 数值化、归一化 | NSL-KDD、 UNSW-NB15 | TP、FP、TN、FN、Acc、FAR、DR、fitness | |
[ | C4.5 | Acc、classification accuracy | |||
[ | C5.0 | 信息增益、 BiLSTM | KDD CUP’100 | TP、FP、TN、FN、FPR、DR、Acc、FNR | |
[ | XGBoost | CICIDS 2017、 WSN-DS | TP、FP、TN、FN、Acc、FAR | ||
[ | XGBoost | CICIDS 2017、 NSL-KDD | TP、FP、TN、FN、Acc、Precision | ||
[ | LightGBM | SMOTE-Tomek、 Min-Max | 递归特征消除、 SHAP | WSN-DS | Acc、TP、FP、TN、FN、Precision、Recall、F-measure |
[ | LightGBM | DATA MAPPING、 Min-Max | SBS | WSN-DS | TP、FP、TN、FN、F-measure、Acc、Recall、F-measure |
[ | LightGBM | 互信息 | WSN-DS | Acc、DR、FPR、Precision、PT、TT | |
[ | LightGBM | 独热编码、归一化、 Smote、Tomek-Link | Pearson相关系数、 信息增益比 | WSN-DS | Precision、Recall、F-measure、Acc、ROC |
[ | RF | 归一化 | NSL-KDD | TP、FP、TN、FN、TPR、FPR、Precision、Acc | |
[ | RF | SMOTE | KDD CUP’99 | TP、FP、TN、FN、Acc、Precision、training time、testing time | |
[ | KSOM | 归一化 | PSO | DR、FPR、detection time | |
[ | SOM | 归一化 | |||
[ | c-means | Min-Max | NSL-KDD | TP、FP、TN、FN、Recall、Acc、Precision、F-measure、Specificity | |
[ | k-means | 归一化 | 改进的深度 稀疏自编码器 | KDD CUP’99 | DR、FPR、ROC |
"
文献 | 改进/使用 深度学习技术 | 数据预处理/处理 | 特征选择/提取 | 公开数据集 | 性能指标 |
---|---|---|---|---|---|
[ | BiLSTM | BiLSTM、 信息增益 | KDD CUP’100 | TP、FP、TN、FN、FPR、DR、Acc、FNR | |
[ | CGAN | CICIDS 2017、 NSL-KDD | TP、FP、TN、FN、Acc、Precision | ||
[ | CNN | WOA-ABC | NSL-KDD | Acc、Execution time、DR、FAR、TP、FP、TN、FN | |
[ | CNN、GRU | 数值化、Min-Max | CNN | WSN-DS | TP、FP、TN、FN、Acc、FPR、TPR |
[ | LSTM | 归一化 | EECA | CICIDS 2017、 NSL-KDD、 UNSW NB2015 | TP、FP、TN、FN、Precision、Acc、FAR、FPR、TPR、Recall、F-measure |
[ | BiLSTM | 独热编码 | BiLSTM | WSN-DS | TP、FP、TN、FN、Acc、DR、FDR |
[ | LSTM | 数值化、Min-Max | WSN-DS | Acc、Precision、Recall、specificity、F-measure | |
[ | GRU | 数值化、Min-Max | WSN-DS | TP、FP、TN、FN、Acc、Precision、Recall、Specificity、F-measure | |
[ | EESNN | 核相关方法 | BCOMA | WSN-DS | TP、TN、FP、FN、F-measure、Acc、Precision、Specificity、Recall、error rate |
[ | GAN | 数值化、 Min-Max、 独热编码 | WSN-DS、 KDD99、 UNSW-NB15 | Precision、Recall、F-measure、FPR | |
[ | ANN | Min-Max | TP、FP | ||
[ | ANN | PSO | WSN-DS | Acc | |
[ | ELM | 数字化、归一化 | NSL-KDD、 UNSW-NB15 | TP、FP、TN、FN、Acc、TPR、FPR、FNR | |
[ | ELM | CICIDS 2017 | TP、FP、TN、FN、Precision、Recall、F-measure、ROC | ||
[ | CCR-ELM | Min-Max | BCOA | WSN-DS | Acc、Specificity、F-measrue、AUC、Sensitivity、computational time |
[ | MLP | 独热编码 | WSN-DS | TP、FP、TN、FN、Recall、Precision、FPR、F-measure | |
[ | DNN | 互相关方法 | NSL-KDD | TP、FP、TN、FN、Recall、Precision、Recall、FPR、F-measure | |
[ | BPNN | NSL-KDD、 UNSW-NB15 | TP、FP、TN、FN、TPR、Recall、Precision、Acc、FPR |
"
数据集 | 获取途径 | 特点 | 缺点 |
---|---|---|---|
WSN-DS[ | | 包含18个特征属性和1个标签字段,通过仿真模拟WSN环境收集数据,包含正常数据和4种DoS攻击(Blackhole攻击、Grayhole攻击、Flooding攻击、Scheduling攻击),是WSN的专用数据集。 | 包含的攻击类型较为局限。 |
KDD CUP’99[ | | 包含41个特征属性和1个标签字段,将所有观察结果标记为正常或4种攻击之一(DoS攻击、R2L攻击、U2R攻击、Probe攻击)。 | 攻击数据是通过仿真和人工数据生成,不是网络真实数据;缺少详细的注释和对攻击类型描述;数据过时,且存在冗余、缺失值。 |
NSL-KDD[ | | 特征属性和标签字段的数量与KDD CUP’99相同,删除了KDD CUP’99中多余的数据。 | 虽然是KDD CUP’99的改进版本,但是仍然不能完全代表真实的网络数据。 |
UNSW-NB15[ | | 共有49个特征,其中包含2个标签字段。包含真实的网络数据和合成的异常流量数据。攻击类型包括Analysus、Backdoor、DoS、Exploits、Fuzzers、Generic、Reconnaissance、Shellcode、Worms。 | 虽然包含网络真实数据,但是仍然存在合成数据,不能完全反映真实网络环境。 |
CICIDS 2017[ | | 包含80个特征和一个标签字段,是基于真实网络环境收集的,包含了多种类型的网络流量数据,也包含多种攻击类型,同时包含详细的特征定义,规模较大。 | 规模大且分散,包含大量冗余数据。 |
[1] | 吴瑞睿, 刘洁琳. 无线传感器网络综述[J]. 科技创新与应用, 2018,14:65-66. |
WU Ruirui, LIU Jielin. Overview of Wireless Sensor Networks[J]. Technology Innovation and Application, 2018,14:65-66. | |
[2] | 裴庆祺, 沈玉龙, 马建峰. 无线传感器网络安全技术综述[J]. 通信学报, 2007,8:113-122. |
PEI Qingqi, SHEN Yulong, MA Jianfeng. Survey of Wireless Sensor Network Security Techniques[J]. Journal on Communications, 2007,8:113-122. | |
[3] | 潘建民, 董必龙, 吕志博. 无线传感器网络技术的军事应用[J]. 数字通信世界, 2017,9:55. |
PAN Jianmin, DONG Bilong, LV Zhibo. Military Application of Wireless Sensor Network Technology[J]. Digital Communication World, 2017,9:55. | |
[4] | 王慧莹. 无线传感器网络在环境监测中的应用[J]. 科技创新与应用, 2021, 11(28):173-175. |
WANG Huiying. Application of Wireless Sensor Networks in Environmental Monitoring[J]. Technology Innovation and Application, 2021, 11(28):173-175. | |
[5] | 王金顺. 无线传感器网络在医疗领域的应用研究[J]. 石河子科技, 2023,1:77-78. |
WANG Jinshun. Application Research of Wireless Sensor Network in Medical Field[J]. Shihezi Science and Technology, 2023,1:77-78. | |
[6] | 赵丽霞, 纪松波. 无线传感器网络在智能交通中的应用[J]. 物联网技术, 2012, 2(6):25-27. |
ZHAO Lixia, JI Songbo. Application of Wireless Sensor Networks in Intelligent Transportation System[J]. Internet of Things Technologies, 2012, 2(6):25-27. | |
[7] | 刘景美, 闫义博. 人工鱼群特征选择的网络入侵检测系统[J]. 西安电子科技大学学报, 2023, 50(4):132-138. |
LIU Jingmei, YAN Yibo. Artificial Fish Feature Selection Network Intrusion Detection System[J]. Journal of Xidian University, 2023, 50(4):132-138. | |
[8] | AHMAD R, WAZIRALI R, ABUAIN T. Machine Learning for Wireless Sensor Networks Security:An Overview of Challenges and Issues[J]. Sensors, 2022, 22(13):1-35. |
[9] | 霍跃华, 吴文昊, 赵法起, 等. 结合协同训练的多视图加密恶意流量检测方法[J]. 西安电子科技大学学报, 2023, 50(4):139-147. |
HUO Yuehua, WU Wenhao, ZHAO Faqi, et al. Multi-View Encryption Malicious Traffic Detection Method Combined with Co-Training[J]. Journal of Xidian University, 2023, 50(4):139-147. | |
[10] | 姚旭, 王晓丹, 张玉玺, 等. 特征选择方法综述[J]. 控制与决策, 2012, 27(2):161-166.. |
YAO Xu, WANG Xiaodan, ZHANG Yuxi, et al. Summary of Feature Selection Algorithms[J]. Control and Decision, 2012, 27(2):161-166. | |
[11] | HELA M, ABIR K, LAMIA C. A Comprehensive Survey on Intrusion Detection Based Machine Learning for IoT Networks[J]. EAI Endorsed Transactions on Security and Safety, 2021, 8(29):e3. |
[12] | 蹇诗婕, 卢志刚, 杜丹, 等. 网络入侵检测技术综述[J]. 信息安全学报, 2020, 5(4):96-122. |
JIAN Shijie, LU Zhigang, DU Dan, et al. Overview of Network Intrusion Detection Technology[J]. Journal of Cyber Security, 2020, 5(4):96-122. | |
[13] | SUBRAMANI S, SELVI M. Multi-Objective PSO Based Feature Selection for Intrusion Detection in IoT Based Wireless Sensor Networks[J]. Optik, 2023,273:1-15. |
[14] | 罗富财, 吴飞, 陈倩, 等. 基于机器学习的无线传感器网络入侵检测算法[J]. 哈尔滨工程大学学报, 2020, 41(3):433-440. |
LUO Caifu, WU Fei, CHEN Qian, et al. Machine Learning-Based Intrusion Detection Technology for Wireless Sensor Networks[J]. Journal of Harbin Engineering University, 2020, 41(3):433-440. | |
[15] | PRABAKARAN K, KUMARATHARAN N, SURESH G, et al. An Evaluation of Effective Intrusion DoS Detection and Prevention System Based on SVM Classifier for WSN[J]. IOP Conference Series:Materials Science and Engineering, 2020, 925(1):1-11. |
[16] | MUKARAM S, MOHAMMED O, LAITH A. Improved Binary Gray Wolf Optimizer and SVM for Intrusion Detection System in Wireless Sensor Networks[J]. Journal of Ambient Intelligence and Humanized Computing, 2020,12:1559-1576. |
[17] | 程超, 武静凯, 陈梅. 一种基于RBM-SVM算法的无线传感网络入侵检测算法[J]. 计算机应用与软件, 2022, 39(5):325-329. |
CHENG Chao, WU Jingkai, CHEN Mei. An Intrusion Detection Algorithm for Wireless Sensor Network Based on RBM-SVM Algorithm[J]. Computer Applications and Software, 2022, 39(5):325-329. | |
[18] | MOHD N, SINGH A, BHADAURIA S H. A Novel SVM Based IDS for Distributed Denial of Sleep Strike in Wireless Sensor Networks[J]. Wireless Personal Communications, 2020, 111(3):1999-2022. |
[19] | AMARAN S, MOHAN R M. Intrusion Detection System Using Optimal Support Vector Machine for Wireless Sensor Networks[C]//2021 International Conference on Artificial Intelligence and Smart Systems(ICAIS).Piscataway:IEEE, 2021: 1100-1104. |
[20] | WEI M, RONG C M, LIANG E X, et al. An Intrusion Detection Mechanism for Ipv6-Based Wireless Sensor Networks[J]. International Journal of Distributed Sensor Networks, 2022, 18(3):1-15. |
[21] | LIU G Y, ZHAO H Q, FAN F, et al. An Enhanced Intrusion Detection Model Based on Improved KNN in WSNs[J]. Sensors, 2022, 22(4):1-18. |
[22] | PAN J S, FAN F, CHU S C, et al. A Lightweight Intelligent Intrusion Detection Model for Wireless Sensor Networks[J]. Security and Communication Networks, 2021,2021:1-15. |
[23] | GITE P, CHOUHAN K, KRISHNA K M, et al. ML Based Intrusion Detection Scheme for Various Types of Attacks in a WSN Using C4.5 and CART Classifiers[J]. Materials Today:Proceedings, 2023, 80(P3):3769-3776. |
[24] | JIN J. Intrusion Detection Algorithm and Simulation of Wireless Sensor Network under Internet Environment[J]. Journal of Sensors, 2021,2021:1-10. |
[25] | 朱梦圆, 陈卓, 刘鹏飞, 等. 基于雾计算的无线传感器网络联合入侵检测算法[J]. 北京航空航天大学学报, 2022, 48(10):1943-1950. |
ZHU Mengyuan, CHEN Zhuo, LIU Pengfei, et al. Fog Computing-Based Federated Intrusion Detection Algorithm for Wireless Sensor Networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10):1943-1950. | |
[26] | TANYA S, SATYARTHA P, SANDEEP S, et al. Intrusion Detection System in Wireless Sensor Network Using Conditional Generative Adversarial Network[J]. Wireless Personal Communications, 2022, 126(1):911-931. |
[27] | MENG D, DAI H, SUN Q, et al. Novel Wireless Sensor Network Intrusion Detection Method Based on LightGBM Model[J]. IAENG International Journal of Applied Mathematics, 2022, 52(4):1-7. |
[28] | JIANG S, ZHAO J, XU X L. SLGBM:An Intrusion Detection Mechanism for Wireless Sensor Networks in Smart Environments[J]. IEEE Access, 2020,8:169548-169558. |
[29] | ISMAIl S, DAWOUD D, REZA H. A Lightweight Multilayer Machine Learning Detection System for Cyber-Attacks in WSN[C]//2022 IEEE 12th Annual Computing and Communication Workshop and Conference(CCWC).Piscataway:IEEE, 2022: 481-486. |
[30] | DENER M, AL S, ORMAN A. STLGBM-DDS:An Efficient Data Balanced DoS Detection System for Wireless Sensor Networks on Big Data Environment[J]. IEEE Access, 2022,10:92931-92945. |
[31] | 董瑞洪, 闫厚华, 张秋余, 等. 基于深度森林算法的分布式WSN入侵检测模型[J]. 兰州理工大学学报, 2020, 46(4):103-109. |
DONG Ruihong, YAN Houhua, ZHANG Qiuyu, et al. Distributed WSN Intrusion Detection Model Based on Deep Forest Algorithm[J]. Journal of Lanzhou University of Technology, 2020, 46(4):103-109. | |
[32] | TAN X P, SU S J, HUANG Z P, et al. Wireless Sensor Networks Intrusion Detection Based on SMOTE and the RandomForest Algorithm[J]. Sensors, 2019, 19(1):1-15. |
[33] | 刘双, 石飞, 汪烈军, 等. 基于KSOM-PSO算法的无线传感器网络入侵检测研究[J]. 中国科技论文, 2017, 12(2):148-153. |
LIU Shuang, SHI Fei, WANG Liejun, et al. Research on Intrusion Detection in Wireless Sensor Networks Based on KSOM-PSO Algorithm[J]. China Sciencepaper, 2017, 12(2):148-153. | |
[34] | KFOURY E, SAAB J, YOUNES P, et al. A Self Organizing Map Intrusion Detection System for RPL Protocol Attacks[J]. International Journal of Interdisciplinary Telecommunications and Networking(IJITN), 2019, 11(1):30-43. |
[35] | GAUTAMI A, SHANTHINI J, KARTHIK J. A Quasi-Newton Neural Network Based Efficient Intrusion Detection System for Wireless Sensor Network[J]. Computer Systems Science and Engineering, 2023, 45(1):427-443. |
[36] | ZHANG Y. The WSN Intrusion Detection Method Based on Deep Data Mining[J]. Journal of Cyber Security Technology, 2023, 7(3):1-19. |
[37] | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2015:114-115. |
[38] | HUSSAIN K, XIA Y, ONAIZAH A N, et al. Hybrid of WOA-ABC and Proposed CNN for Intrusion Detection System in Wireless Sensor Networks[J]. Optik, 2022,271:1-16. |
[39] | ZHOU J J, YANG T Y, ZHANG J L, et al. Intrusion Detection Model for Wireless Sensor Networks Based on MC-GRU[J]. Wireless Communications and Mobile Computing, 2022,2022:1-11. |
[40] | LIU Z, GHULAM M, ZHENG J, et al. Intrusion Detection in Wireless Sensor Network Using Enhanced Empirical Based Component Analysis[J]. Future Generation Computer Systems, 2022,135:181-193. |
[41] |
程小辉, 牛童, 汪彦君. 基于序列模型的无线传感网入侵检测系统[J]. 计算机应用, 2020, 40(6):1680-1684.
doi: 10.11772/j.issn.1001-9081.2019111948 |
CHENG Xiaohui, NIU Tong, WANG Yanjun. Wireless Sensor Network Intrusion Detection System Based on Sequence Model[J]. Journal of Computer Applications, 2020, 40(6):1680-1684.
doi: 10.11772/j.issn.1001-9081.2019111948 |
|
[42] | NAGALALLI G, RAVI G. A Novel MegaBAT Optimized Intelligent Intrusion Detection System in Wireless Sensor Networks[J]. Intelligent Automation & Soft Computing, 2023, 35(1):475-490. |
[43] | RAMANA K, REVATHI A, GAYATHRI A, et al. WOGRU-IDS — An Intelligent Intrusion Detection System for IoT Assisted Wireless Sensor Networks[J]. Computer Communications, 2022,196:195-206. |
[44] | SARATH K R, SAMPATH P, RAMKUMAR M. Enhanced Elman Spike Neural Network Fostered Intrusion Detection Framework for Securing Wireless Sensor Network[J]. Peer-to-Peer Networking and Applications, 2023, 16(4):1819-1833. |
[45] |
刘拥民, 杨钰津, 罗皓懿, 等. 基于双向循环生成对抗网络的无线传感网入侵检测方法[J]. 计算机应用, 2023, 43(1):160-168.
doi: 10.11772/j.issn.1001-9081.2021112001 |
LIU Yongmin, YANG Yujin, LUO Haoyi, et al. Intrusion Detection Method for Wireless Sensor Network Based on Bidirectional Circulation Generative Adversarial Network[J]. Journal of Computer Applications, 2023, 43(1):160-168.
doi: 10.11772/j.issn.1001-9081.2021112001 |
|
[46] | SINHA S, PAUL A. Neuro-Fuzzy Based Intrusion Detection System for Wireless Sensor Network[J]. Wireless Personal Communications, 2020,114:835-851. |
[47] | SHI L S, LI K. Privacy Protection and Intrusion Detection System of Wireless Sensor Network Based on Artificial Neural Network[J]. Computational Intelligence and Neuroscience, 2022,2022:1795454. |
[48] | ZHANG W J, HAN D Z, LI K, et al. Wireless Sensor Network Intrusion Detection System Based on MK-ELM[J]. Soft Computing, 2020,24:12361-12374. |
[49] | WANG W. An Improved ELM Wireless Sensor Network Intrusion Detection Model Based on an Optimization Algorithm[C]//Proceedings of the 2023 5th Asia Pacific Information Technology Conference. New York: ACM, 2023:95-102. |
[50] | ALJEBREEN M, ALOHALI M A, SAEED M K, et al. Binary Chimp Optimization Algorithm with ML Based Intrusion Detection for Secure IoT-Assisted Wireless Sensor Networks[J]. Sensors, 2023, 23(8):1-17. |
[51] | ALMASLUKH B. Deep Learning and Entity Embedding-Based Intrusion Detection Model for Wireless Sensor Networks[J]. Computers,Materials & Continua, 2021, 69(1):1343-1360. |
[52] | GOWDHAMAN V, DHANAPAL R. An Intrusion Detection System for Wireless Sensor Networks Using Deep Neural Network[J]. Soft Computing, 2021, 26(23):13059-13067. |
[53] | LU X, HAN D Z, DUAN L T, et al. Intrusion Detection of Wireless Sensor Networks Based on IPSO Algorithm and BP Neural Network[J]. International Journal of Computational Science and Engineering, 2020, 22(2-3):221-232. |
[54] | 蔡玲如, 朱理, 黄瑞崧, 等. 基于强化学习的无线传感器网络入侵检测攻防博弈研究[J]. 计算机应用研究, 2022, 39(12):3786-3790. |
CAI Lingru, ZHU Li, HUANG Ruisong, et al. Research on Attack-Defence Game Based on Reinforcement Learning for Wireless Sensor Network Intrusion Detection[J]. Application Research of Computers, 2022, 39(12):3786-3790. | |
[55] | KHOT P S, NAIK U, et al. Taylor CMVO:Taylor Competitive Multi-Verse Optimizer for Intrusion Detection and Cellular Automata-Based Secure Routing in WSN[J]. International Journal of Intelligent Robotics and Applications, 2022, 6(2):306-322. |
[56] | ALMOMANI I, Al-KASASBEH B, AL-AKHRAS M. WSN-DS:A Dataset for Intrusion Detection Systems in WirelessSensor Networks[J]. Journal of Sensors, 2016,1:4731953. |
[57] | LIPPMANN R, HAINES J W, FRIED D J, et al. The 1999 DARPA Off-Line Intrusion Detection Evaluation[J]. Computer Networks, 2000, 34(4):579-595. |
[58] | TAVALLAEE M, BAGHERI E, LU W, et al. A Detailed Analysis of The KDD CUP 99 Data Set[C]//2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications. Piscataway:IEEE, 2009:1-6. |
[59] | MOUSTAFA N, SLAY J. UNSW-NB15:A Comprehensive Data Set for Network Intrusion Detection Systems(UNSW-NB15 Network Data Set)[C]//2015 Military Communications and Information Systems Conference(MilCIS).Piscataway:IEEE, 2015: 1-6. |
[60] | SHARAFALDIN I, HABIBI L A, GHORBANI A A. A Detailed Analysis of the CICIDS2017 Data Set[C]//Information Systems Security and Privacy:4th International Conference,ICISSP 2018.Heidelberg:Springer, 2019:172-188. |
[1] | XIONG Jingwei, PAN Jifei, BI Daping, DU Mingyang. Multi-scale convolutional attention network for radar behavior recognition [J]. Journal of Xidian University, 2023, 50(6): 62-74. |
[2] | LIU Jingmei,YAN Yibo. Artificial fish feature selection network intrusion detection system [J]. Journal of Xidian University, 2023, 50(4): 132-138. |
[3] | GUO Gang,YANG Chao,CHEN Mingzhe,MA Jianfeng. App traffic identification under ShadowSocksR proxy with machine learning [J]. Journal of Xidian University, 2023, 50(2): 138-146. |
[4] | LI Wenhua,DONG Lihua,ZENG Yong. Analysis and improvement of the security of the key-nets homomorphic encryption scheme [J]. Journal of Xidian University, 2023, 50(1): 192-202. |
[5] | ZHANG Hao, QIN Tao, XU Linghua, WANG Xiao, YANG Jing. WSNs node deployment strategy based on the improved multi-objective ant-lion algorithm [J]. Journal of Xidian University, 2022, 49(5): 47-59. |
[6] | CHEN Junjie, DENG Honggao, MA Mou, JIANG Junzheng. GRN-GRU:a fault detection model for wireless sensor networks [J]. Journal of Xidian University, 2022, 49(5): 60-67. |
[7] | DOU Peipei,ZENG Yuqin,LU Yi,MA Hongliang,XU Mengying,ZHOU Jie. Improved method for energy efficient clustering of the wireless sensor network [J]. Journal of Xidian University, 2022, 49(3): 68-73. |
[8] | SUN Zeyu,LAN Lan,ZENG Cao,LIAO Guisheng. Adaptive sink-routing decision algorithm for minimum-energy consumption [J]. Journal of Xidian University, 2022, 49(2): 11-20. |
[9] | QIAO Wenxin,LU Yu,LIU Yicen,LI Zhiwei,LI Xi. Dynamic scheduling method for service function chains in space air terrestrial aided edge cloud networks [J]. Journal of Xidian University, 2022, 49(2): 79-88. |
[10] | XU Shasha,ZHOU Fang,LI Yangjian,JIANG Junzheng. New distributed positioning algorithm for sensor nodes [J]. Journal of Xidian University, 2022, 49(2): 89-96. |
[11] | LI Ming,HU Jiangping,CAO Xiaoli. Minimum cost of node deployment strategy for heterogeneous sensor networks [J]. Journal of Xidian University, 2021, 48(4): 11-19. |
[12] | ZENG Yong,WU Zhengyuan,DONG Lihua,LIU Zhihong,MA Jianfeng,LI Zan. Research on malicious traffic identification technology in encrypted traffic [J]. Journal of Xidian University, 2021, 48(3): 170-187. |
[13] | CHAI Yanna,LI Kunlun,SONG Huansheng. On the security of the intrusion detection system in smart vehicles [J]. Journal of Xidian University, 2021, 48(3): 31-39. |
[14] | ZHANG Shudong,GAO Haichang,CAO Xiwen,KANG Shuai. Adaptive fast and targeted adversarial attack for speech recognition [J]. Journal of Xidian University, 2021, 48(1): 168-175. |
[15] | LIU Jingmei,GAO Yuanbo. Fast network intrusion detection system using adaptive binning feature selection [J]. Journal of Xidian University, 2021, 48(1): 176-182. |
|