[1]Candès E J, Demanet L. The Curvelet Representation of Wave Propagators is Optimally Sparse [J]. Comm Pure Appl Math, 2005, 58(11): 1472-1528.
[2] Candès E J, Donoho D L. New Tight Frames of Curvelets and Optimal Representations of Objects with Piecewise-C2 Singularities [J]. Comm Pure Appl Math, 2004, 57(2): 219-266.
[3] 陈丽霞, 丁宣浩, 宋国乡. 基于总变分与小波变换的图像去噪算法[J]. 西安电子科技大学学报, 2008, 35(6): 1075-1079.
Chen Lixia, Ding Xuanhao, Song Guoxiang. Image Denoising Algorithm Based on Total Variation and Wavelet Transform[J]. Journal of Xidian University, 2008, 35(6): 1075-1079.
[4] 卢成武. (BV,E)分解框架下的多尺度图像分解[J]. 西安电子科技大学学报, 2009, 36(1): 171-176.
Lu Chengwu. Multiscale Decomposition of Image Under (BV,E) Frame [J]. Journal of Xidian University, 2009, 36(1): 171-176.
[5] Demanet L. Curvelets, Wave Atoms and Wave Equations [D]. California: California Institute of Technology, 2006.
[6] Demanet L, Ying L X. Wave Atoms and Sparsity of Oscillatory Patterns [J]. Appl Comput Harmon Anal, 2007, 23(3): 368-387.
[7] Coifman R R, Donoho D L. Translation-invariant Denoising [C]//Lecture Notes in Statistics: Wavelets and Statistics. New York: Springer-Verlag, 1995: 125-150.
[8] Antoine J P, Murenzi R. Two-dimensional Directional Wavelets and the Scale-angle Representation [J]. Signal Process, 1996, 52(3): 259-281. |