[1] HU Y, WANG N, TAO D, et al. SERF: a Simple, Effective, Robust, and Fast Image Super-resolvtion from Cascaded Linear Regression[J]. IEEE Transactions on Image Processing, 2016, 25(9): 4091-4102.
[2] 苏衡, 周杰, 张志浩, 等. 超分辨率图像重建方法综述[J]. 自动化学报, 2013, 39(8): 1202-1213.
SU Heng, ZHOU Jie, ZHANG Zhihao, et al. Survey of Super-resolution Image Reconstruction Methods[J]. Acta Automatica Sinica, 2013, 39(8): 1202-1213.
[3] CHOI J S, BAE S H, KIM M. Single Image Super-resolution Based on Self-examples Using Context-dependent Subpatches[C]//Proceedings of the 2015 International Conference on Image Processing. Washington: IEEE Computer Society, 2015: 2835-2839.
[4] SCHUON S, THEOBALT C, DAVIS J, et al. LidarBoost: Depth Superresolution for ToF 3D Shape Scanning[C]//Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Washington: IEEE Computer Society, 2009: 343-350.
[5] DONG C, LOY C C, HE K, et al. Image Super-resolution Using Deep Convolutional Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307.
[6] KIM J, LEE J K, LEE K M. Accurate Image Super-resolution Using Very Deep Convolutional Network[C]//Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 1646-1654.
[7] KIM J, LEE J K, LEE K M. Deeply-recursive Convolution Network for Image Super-resolution[C]//Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 1637-1645.
[8] GOLDSTEIN T, OSCHER S. The Split Bregman Method for L1 Regularized Problem[J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343.
[9] LEDIG C, THEIS L, HUSSARS F, et al. Photo-realistic Single Image Super-resolution Using a Generative Adversarial Network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 543-551.
[10] MARTIN D, FOWLKES C, TAL D, et al. A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics[C]//Proceedings of the 2001 IEEE Conference on International Conference on Computer Vision. Washington: IEEE Computer Society, 2001: 416-423. |