[1] 焦晓鹏, 慕建君, 周利华. 一种Tanner图短环计数新方法[J]. 西安电子科技大学学报, 2010, 37(2): 311-314.
Jiao Xiaopeng, Mu Jianjun, Zhou Lihua. Novel Method for Counting Short Cycles of Tanner Graphs [J]. Journal of Xidian University, 2010, 37(2): 311-314.
[2] Fossorier M P C. Quasi-Cyclic Low-Density Parity-Check Codes from Circulant Permutation Matrices [J]. IEEE Trans on Inform Theory, 2004, 50(8): 1788-1793.
[3] Wang Y, Yedidia J S, Draper S C. Construction of High-Girth QC-LDPC Codes[C]//5th International Symposium on Turbo Codes and Related Topics. Lausanne: IEEE, 2008: 180-185.
[4] Tao Xiongfei, Liu Weizhong, Zou Xuecheng. On the Construction of Low-Density Parity-Check Codes with Girth 10 [J]. International Journal of Electronics and Communications, 2009, 63(8): 689-694.
[5] O'Sullivan M E. Algebraic Construction of Sparse Matrices with Large Girth [J]. IEEE Trans on Inform Theory, 2006, 52(2): 718-727.
[6] Hagiwara M, Nuida K, Kitagawa T, et al. On Minimal Length of Quasi Cyclic LDPC Codes with Girth 6 [C]//Proc IEEE ISITA. Seoul: IEEE, 2006: 103-108.
[7] Hagiwara M, Fossorier M P C, Kitagawa T, et al. Smallest Size of Circulant Matrix for Regular (3, L) and (4, L) Quasi-Cyclic LDPC Codes with Girth 6 [J]. IEICE Trans on Fundamentals, 2009, E92-A(11): 2891-2894.
[8] Colbourn C J, Dinitz J H. Handbook of Combinatorial Designs [M]. Second Ed. Boca Raton: CRC Press, 2006. |