[1] Zachary T H, Roummel F M, Rebecca M W. This is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction Algorithms-Theory and Practice [J]. IEEE Trans on Image Processing, 2012, 21(36): 1084-1096.
[2] 孙景荣, 许录平, 王婷. 一种用于脉冲星信号去噪的新方法[J]. 西安电子科技大学学报, 2010, 37(6): 1059-1064.
Sun Jingrong, Xu Luping, Wang Ting. New Denoising Method for Pulsar Signal [J]. Journal of Xidian University, 2010, 37(6): 1059-1064.
[3] Donoho D L, Coifman R R. Translation-Invariant Denoising [J]. Wavelets and Statistics, 1995, 125(1): 1-26.
[4] Anscombe F. The Transformation of Poisson, Binomial and Negative Binomial Data [J]. Biometrika, 1948, 35(3): 246-254.
[5] Donoho D L. Nonlinear Wavelet Methods for Recovery of Signals, Densities and Spectra from Indirect and Noisy Data [C]//Proc of Symposia in Applied Mathematics. San Antonio: American Mathematical Society, 1993: 173-205.
[6] Fryzlewicz P, Nason G. A Wavelet-Fisz Agorithm for Poisson Intensity Estimation [J]. Journal of Computational And Graphical Statistics, 2003, 13(3): 621-638.
[7] Freeman P E, Kashyap V. X-ray Source Detection Using the Wavelet Transform[C]//Astronomical Data Analysis Software and Systems Ⅴ. San Francisco: Astronomy Software of Pacific, 1996: 163-165.
[8] Kolaczyk E D. Bayesian Multi-Scale Models for Poisson Processes [J]. Journal of the American Statistical Association, 1999, 94(447): 920-933.
[9] Charles C, Rasson J P. Wavelet Denoising of Poisson-distributed Data and Applications[J]. Computational Statistics and Data Analysis, 2003, 43(2): 139-148.
[10] 高国荣, 刘艳萍, 潘琼. 基于小波域可导阈值函数与自适应阈值的脉冲星信号消噪理[J]. 物理学报, 2012, 61(13): 13970.
Gao Guorong, Liu Yanping, Pan Qiong. A Differentiable Thresholding Function and an Adaptive Threshold Selection Technique for Pulsar Signal Denoising[J]. Acta Phys Sin, 2012, 61(13): 13970.
[11] 胡慧君, 赵宝升, 盛立志, 等. 一种基于泊松分布的提高X射线脉冲星脉冲轮廓信噪比的方法[J]. 中国科学: 物理学 力学 天文学, 2011, 41(8): 1015-1020.
Hu Huijun, Zhao Baosheng, Sheng Lizhi, et al. A Method for Improving the SNR of X-ray Pulsar Profile Based on Poisson Distribution [J]. Sci Sin Phys Mech Astr, 2011, 41(8): 1015-1020.
[12] Rebecca M W, Robert D N. Multiscale Poisson Intensity and Density Estimation [J]. IEEE Transactions on Information Theory, 2007, 53(9): 3171-3189.
[13] Donoho D L, Dyn N, Levin D. Smooth Multiwavelet Duals of Alpert Bases by Moment-Interpolation with Applications to Re-cursive Partitioning [J]. Applied and Computational Harmonic Analysis, 2000, 9(2): 166-203.
[14] Kolaczyk E D. Non-Parametric Estimation of Gamma-Ray Burst Intensities Using Haar Wavelets [J]. The Astrophysical Journal, 2000, 483(1): 340-349. |