[1] GALLAGER R G. Low-density Parity-check Codes [J]. IRE Transactions on Information Theory, 1962, 8(1): 21-28.
[2] DAVEY M C, MACKAY D J C. Low Density Parity Check Codes over GF(q) [C]//Proceedings of the 1998 Information Theory Workshop. New York: IEEE,1998: 70-71.
[3] ZHU M, GUO Q, BAI B M, et al. Reliability-based Joint Detection-decoding Algorithm for Nonbinary LDPC-coded Modulation Systems [J]. IEEE Transactions on Communications, 2016, 64(1): 2-14.
[4] SONG L Y, HUANG Q, WANG Z L, et al. Two Enhanced Reliability-based Decoding Algorithms for Nonbinary LDPC Codes [J]. IEEE Transactions on Communications, 2016, 64(2): 479-489.
[5] POULLIAT C, FOSSORIER M, DECLERCQ D. Design of Regular (2, dc)-LDPC Codes over GF(q) Using Their Binary Images [J]. IEEE Transactions on Communications, 2008, 56(10): 1626-1635.
[6] DIAO Q J, TAI Y Y, LIN S, et al. LDPC Codes on Partial Geometries: Construction, Trapping Set Structure, and Puncturing [J]. IEEE Transactions on Information Theory, 2013, 59(12): 7898-7914.
[7] LI J, LIU K, LIN S, et al. Algebraic Quasi-cyclic LDPC Codes: Construction, Low Error-floor, Large Girth and a Reduced-complexity Decoding Scheme [J]. IEEE Transactions on Communications, 2014, 62(8): 2626-2637.
[8] ZHAO S C, MA X, ZHANG X Y, et al. A Class of Nonbinary LDPC Codes with Fast Encoding and Decoding Algorithms [J]. IEEE Transactions on Communications, 2013, 61(1): 1-6.
[9] DOLECEK L, DIVSALAR D, SUN Y, et al. Non-binary Protograph-based LDPC Codes: Enumerators, Analysis, and Designs [J]. IEEE Transactions on Information Theory, 2014, 60(7): 3913-3941.
[10] CHEN C, BAI B M, SHI G M, et al. Nonbinary LDPC Codes on Cages: Structural Property and Code Optimization [J]. IEEE Transactions on Communications, 2015, 63(2): 364-375.
[11] 沈灏. 组合设计理论[M]. 上海: 上海交通大学出版社, 2008: 92-124.
[12] PARK H, HONG S, NO J S, et al. Construction of High-rate Regular Quasi-cyclic LDPC Codes Based on Cyclic Difference Families [J]. IEEE Transactions on Communications, 2013, 61(8): 3108-3113.
[13] ZHAO X, ZHANG L J, CHENG L. Construction of Nonbinary LDPC Codes: Prime Difference Approach [C]//IET Conference Publications: 2011. Stevenage: IET, 2011: 114-117.
[14] RYAN W E, LIN S. Channel Codes: Classical and Modern [M]. New York: Cambridge University Press, 2009: 593-600.
[15] COLBOURN C J, DINITZ J. The CRC Handbook of Combinatorial Designs [M]. 2nd Edition. Boca Raton: CRC Press, 2006: 392-410.
[16] FOSSORIER M. Quasi-cyclic Low-density Parity-check Codes from Circulant Permutation Matrices [J]. IEEE Transactions on Information Theory, 2004, 50(8): 1788-1793.
[17] CHEN C, BAI B M, WANG X M. Construction of Nonbinary Quasi-cyclic LDPC Cycle Codes Based on Singer Perfect Difference Set [J]. IEEE Communications Letters, 2010, 14(2): 181-183.
[18] HU X Y, ELEFTHERIOU E, ARNOLD D M. Regular and Irregular Progressive Edge-growth Tanner Graphs [J]. IEEE Transactions on Information Theory, 2005, 51(1): 386-398.
[19] 林伟. 多元LDPC码:设计、构造与译码 [D]. 西安: 西安电子科技大学, 2012.
[20] IEEE Standards Association. IEEE Standard for Local and Metropolitan Area Networks. Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems: IEEE 802.16e-2006 [S]. New York: IEEE, 2006.
[21] CCSDS. Short Block Length LDPC Codes for TC Synchronization and Channel Coding, Research and Development for Space Data System Standards: CCSDS 231.1-O-1[S]. Washington: CCSDS, 2015.
[22] SONG L Y, ZHANG M, HUANG Q, et al. Low Error-floor Majority-logic Decoding Based Algorithm for Non-binary LDPC Codes [C]//Proceedings of the IEEE International Conference on Communications: 2015. Piscataway: IEEE, 2015: 4072-4076.
[23] POLYANSKIY Y, POOR H V, VERDU S, Channel Coding Rate in the Finite Block Length Regime [J]. IEEE Transactions on Information Theory, 2010, 56(5): 2307-2359. |