[1] |
BERTALMIO M, SAPIRO G, CASELLES V, et al. Image Inpainting[C]// Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2000:417-424.
|
[2] |
申海杰, 边倩, 陈晓范, 等. 生成对抗网络用于视频去模糊[J]. 西安电子科技大学学报, 2019, 46(6):112-117.
|
|
SHEN Haijie, BAN Qian, CHEN Xiaofan, et al. Video Deblurring Using the Generative Adversarial Network[J]. Journal of Xidian University, 2019, 46 (6):112-117.
|
[3] |
SRIDEVI G, KUMAR S S. Image Inpainting Based on Fractional-Order Nonlinear Diffusion for Image Reconstruction[J]. Circuits,Systems,and Signal Processing, 2019, 38(8):3802-3817.
doi: 10.1007/s00034-019-01029-w
|
[4] |
WEI Y, LIU S. Domain-Based Structure-Aware Image Inpainting[J]. Signal,Image and Video Processing, 2016, 10(5):911-919.
doi: 10.1007/s11760-015-0840-y
|
[5] |
ZHANG D, LIANG Z, YANG G, et al. A Robust Forgery Detection Algorithm for Object Removal by Exemplar-Based Image Inpainting[J]. Multimedia Tools and Applications, 2018, 77(10):11823-11842.
doi: 10.1007/s11042-017-4829-0
|
[6] |
NEWSON A, ALMANSA A, GOUSSEAU Y, et al. Non-Local Patch-Based Image Inpainting[J]. Image Processing on Line, 2017, 7:373-385.
doi: 10.5201/ipol.2017.189
|
[7] |
ZHANG N, JI H, LIU L, et al. Exemplar-Based Image Inpainting Using Angle-Aware Patch Matching[J]. EURASIP Journal on Image and Video Processing, 2019, 2019(1):70.
doi: 10.1186/s13640-019-0471-2
|
[8] |
YANG S, LIANG H, WANG Y, et al. Image Inpainting Based on Multi-Patch Match with Adaptive Size[J]. Applied Sciences, 2020, 10(14):4921.
doi: 10.3390/app10144921
|
[9] |
FAN Q, ZHANG L. A Novel Patch Matching Slgorithm for Exemplar-Based Image Inpainting[J]. Multimedia Tools and Applications, 2018, 77(9):10807-10821.
doi: 10.1007/s11042-017-5077-z
|
[10] |
ELHARROUSS O, ALMAADEED N, AL-MAADEED S, et al. Image Inpainting:A Review[J]. Neural Processing Letters, 2020, 51:2007-2028.
doi: 10.1007/s11063-019-10163-0
|
[11] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. New York: ACM, 2014:2672-2680.
|
[12] |
PATHAK D, KRÄHENBÜHL P, DONAHUE J, et al. Context Encoders:Feature Learning by Inpainting[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:2536-2544.
|
[13] |
LIU G, REDA F A, SHIH K J, et al. Image Inpainting for Irregular Holes Using Partial Convolutions[C]// Proceedings of the European Conference on Computer Vision (ECCV).Heidelberg:Springer, 2018:89-105.
|
[14] |
SAGONG M, SHIN Y, KIM S, et al. PEPSI:Fast Image Inpainting with Parallel Decoding Network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:11360-11368.
|
[15] |
NAZERI K, NG E, JOSEPH T, et al. EdgeConnect:Generative Image Inpainting with Adversarial Edge Learning (2019)[J/OL]. [2019-01-05]. https://arxiv.org/abs/1901.00212v2.
|
[16] |
LIN X, MA L, LIU W, et al. Context-Gated Convolution (2019)[J/OL]. [2019-10-12]. https://arxiv.org/abs/1910.05577.
|
[17] |
曹卫东, 李嘉琪, 王怀超. 采用注意力门控卷积网络模型的目标情感分析[J]. 西安电子科技大学学报, 2019, 46(6):30-36.
|
|
CAO Weidong, LI Jiaqi, WANG Huaichao. Analysis of Targeted Sentiment by the Attention Gated Convolutional Network Model[J]. Journal of Xidian University, 2019, 46 (6):30-36.
|
[18] |
YUSHCHENKO V, ARASLANOV N, ROTH S. Markov Decision Process for Video Generation[C]// Proceedings of the IEEE International Conference on Computer Vision Workshop.Piscataway:IEEE, 2019:1523-1532.
|
[19] |
MEHTA S, RASTEGARI M, CASPI A, et al. ESPNet:Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation[C]// Proceedings of the European Conference on Computer Vision (ECCV).Heidelberg:Springer, 2018:561-580.
|
[20] |
LOU L, ZANG S. Research on Edge Detection Method Based on Improved HED Network[J]. Journal of Physics:Conference Series, 2020, 1607:012068.
doi: 10.1088/1742-6596/1607/1/012068
|
[21] |
SRINIVASAN S, BABAKI B, FARNADI G, et al. Lifted Hinge-Loss Markov Random Fields[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2019, 33:7975-7983.
|
[22] |
KIM J, KIM M, KANG H, et al. U-GAT-IT:Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (2019)[J/OL]. [2019-07-25]. https://arxiv.org/abs/1907.10830v3.
|