[1] |
何委林, 都明, 韩诚亮, 等. 跳频通信技术研究及仿真分析[J]. 无线电工程, 2021, 51(4):264-270.
|
|
HE Weilin, DU Ming, HAN Chengliang, et al. Research and Simulation Analysis of Frequency Hopping Communication Technology[J]. Radio Engineering, 2021, 51(4):264-270.
|
[2] |
DONOHOD L. Compressed Sensing[J]. IEEE Transactions Information Theory, 2006, 52(4):1289-1306.
doi: 10.1109/TIT.2006.871582
|
[3] |
MISHALI M, ELDAR Y C, DOUNAEVSKY O, et al. Xampling:Analog to Digital at Sub-Nyquist Rates[J]. IET Circuits,Devices & Systems, 2009, 5(1):8-20.
doi: 10.1049/iet-cds.2010.0147
|
[4] |
黎力, 闫利, 周磊, 等. Lp范数约束的去冲击干扰优化算法[J]. 西安电子科技大学学报, 2020, 47(1):30-36.
|
|
LI Li, YAN Li, ZHOU Lei, et al. Lp-Norm Regularization Optimization of Impulsive Disturbance Removal[J]. Journal of Xidian University, 2020, 47(1):30-36.
|
[5] |
XIANG H, HE K, YOO S, et al. An Interior Point Method for Nonnegative Sparse Signal Reconstruction[C]// 2018 25th IEEE International Conference on Image Processing (ICIP).Piscataway:IEEE, 2018:1193-1197.
|
[6] |
MA T, SONG E, SHI Q. Globally Convergent Gradient Projection Type Algorithms for a Class of Robust Hypothesis Testings[J]. IEEE Transactions on Signal Processing, 2021, 69:1828-1841.
doi: 10.1109/TSP.2021.3059097
|
[7] |
YANG S. An Optimization Model Based on Gradient Projection Method to Minimize Generation Cost in a Given Power Grid[C]// 2020 5th International Conference on Mechanical,Control and Computer Engineering (ICMCCE).Piscataway:IEEE, 2020:1269-1273.
|
[8] |
WU P, CHENG J. Nonconvex Regularized Gradient Projection Sparse Reconstruction for Massive MIMO Channel Estimation (2021)[J/OL]. [2021-01-26]. https://arxiv.org/abs/2101.11091.
|
[9] |
冯涵哲, 严俊坤, 刘宏伟. 多站雷达功率分配自修正凸松弛算法[J]. 西安电子科技大学学报, 2018, 45(2):26-30.
|
|
FENG Hanzhe, YAN Junkun, LIU Hongwei. Auto-Corrected Convex Relaxation Algorithm for Power Allocation In Multi-radar System Used as Target Localization[J]. Journal of Xidian University, 2018, 45(2):26-30.
|
[10] |
GILBERT A C, STRAUSS M J, TROPPJ A, et al. One Sketch for All:Fast Algorithms for Compressed Sensing[C]// ACM Symposium on Theory of Computing. New York: ACM, 2007:237-246.
|
[11] |
ZHANG Z, CHEN H, CHENG Q S. Surrogate-Assisted Enhanced Global Optimization Based on Hybrid DE for Antenna Design[C]// 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO).Piscataway:IEEE, 2020:1-4.
|
[12] |
HOU X, LI W, HAN Y, et al. A Novel Mobile Robot Navigation Method Based on Hand-Drawn Paths[J]. IEEE Sensors Journal, 2020, 20(19):11660-11673.
doi: 10.1109/JSEN.2020.2997055
|
[13] |
YANG C, SOLOVIEVA. Mobile Positioning with Signals of Opportunity in Urban and Urban Canyon Environments[C]// 2020 IEEE/ION Position,Location and Navigation Symposium (PLANS).Piscataway:IEEE, 2020:1043-1059.
|
[14] |
KONG L, AN Y, LIANG Q, et al. Reconstruction for Fluorescence Molecular Tomography via Adaptive Group Orthogonal Matching Pursuit[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(9):2518-2529.
doi: 10.1109/TBME.2019.2963815
|
[15] |
蒋莹, 冯明月, 徐起, 等. 高精度宽带欠定信号快速DOA估计方法[J]. 西安电子科技大学学报, 2020, 47(2):91-97.
|
|
JIANG Ying, FENG Mingyue, XU Qi, et al. Fast DOA Estimation Methods for Underdetermined Wideband Signals with a High Accuracy[J]. Journal of Xidian University, 2020, 47(2):91-97.
|
[16] |
MENG X, INALTEKIN H, KRONGOLD B. End-to-End Deep Learning-Based Compressive Spectrum Sensing in Cognitive Radio Networks[C]// ICC 2020-2020 IEEE International Conference on Communications (ICC).Piscataway:IEEE, 2020:1-6.
|
[17] |
SU H, BAO Q, CHEN Z. ADMM-Net:A Deep Learning Approach for Parameter Estimation of Chirp Signals under Sub-Nyquist Sampling[J]. IEEE Access, 2020, 8:75714-75727.
doi: 10.1109/ACCESS.2020.2989507
|
[18] |
MOOLAYIL J. Learn Keras for Deep Neural Networks:A Fast-Track Approach to Modern Deep Learning with Python[M]. Heidelberg:Springer, 2019.
|