Journal of Xidian University ›› 2022, Vol. 49 ›› Issue (4): 100-108.doi: 10.19665/j.issn1001-2400.2022.04.012
• Computer Science and Technology • Previous Articles Next Articles
MA Lun1,2(),LIU Xin1(),ZHAO Bin1(),WANG Ruiping1(),LIAO Guisheng2(),ZHANG Yajing1()
Received:
2021-11-15
Online:
2022-08-20
Published:
2022-08-15
Contact:
Xin LIU
E-mail:lunma@126.com;3231077923@qq.com;zhaob6001@163.com;2382227469@qq.com;gsliao@xidian.edu.cn;2316592715@qq.com
CLC Number:
MA Lun,LIU Xin,ZHAO Bin,WANG Ruiping,LIAO Guisheng,ZHANG Yajing. Impaired behavior recognition by using the multi-head-siamese neural network[J].Journal of Xidian University, 2022, 49(4): 100-108.
"
基线网络 | 文献[3]的网络 | 文献[4]的网络 | 文中提出的网络 | ||
---|---|---|---|---|---|
Input Layer:0 | Input Layer:0 | (处理手部传 | (处理腿踝 | (处理胸部 | Input Layer(hand):0 |
cnn1:8 720 | lstm1:7 680 | 感器数据) | 传感器数据) | 传感器数据) | Input Layer(leg):0 |
max_pooling1:0 | lstm2:8 320 | Input Layer:0 | Input Layer:0 | Input Layer:0 | Input Layer(neck):0 |
cnn2:30 816 | cnn1:10 304 | cnn11:1 792 | cnn21:2 944 | cnn31:6 400 | cnn1:2 240 |
max_pooling2:0 | max_pooling:0 | max_pooling11:0 | max_pooling21:0 | max_pooling31:0 | max_pooling1:0 |
cnn3:43 120 | cnn2:24 704 | cnn12:12 352 | cnn22:20 544 | cnn32:45 120 | cnn2:23 136 |
GAP:0 | GAP:0 | max_pooling12:0 | max_pooling22:0 | max_pooling32:0 | max_pooling2:0 |
dropout:0 | BN:512 | cnn13:12 352 | cnn23:20 544 | cnn33:45 120 | cnn3:32 368 |
Dense:565 | Dense:645 | max_pooling13:0 | max_pooling23:0 | max_pooling33:0 | GAP:0 |
Bi_lstm1:197 632 | Bi_lstm2:197 632 | Bi_lstm3:197 632 | dropout:0 | ||
Dropout1:0 | Dropout2:0 | Dropout3:0 | concatenate:0 | ||
Dense:1 685 | |||||
Concatenate:0 | |||||
Dense:3 845 | |||||
训练参数量: 83 221 | 训练参数量: 51 909 | 训练参数量: 763 909 | 训练参数量: 59 429 |
[1] |
DEMROZI F, PRAVADELLI G, BIHORAC A, et al. Human Activity Recognition Using Inertial,Physiological and Environmental Sensors:a Comprehensive Survey[J]. IEEE Access, 2020, 8:210816-210836.
doi: 10.1109/ACCESS.2020.3037715 |
[2] |
DANGL M, MIN K, WANG H, et al. Sensor-Based and Vision-Based Human Activity Recognition:A Comprehensive Survey[J]. Pattern Recognition, 2020, 108:107561.
doi: 10.1016/j.patcog.2020.107561 |
[3] |
XIA K, HUANG J, WANG H. LSTM-CNN Architecture for Human Activity Recognition[J]. IEEE Access, 2020, 8:56855-56866.
doi: 10.1109/ACCESS.2020.2982225 |
[4] |
IHIANLEI K, NWAJANA A O, EBENUWA S H, et al. A Deep Learning Approach for Human Activities Recognition from Multimodal Sensing Devices[J]. IEEE Access, 2020, 8:179028-179038.
doi: 10.1109/ACCESS.2020.3027979 |
[5] | SHENG T, HUBER M. Siamese Networks for Weakly Supervised Human Activity Recognition[C]// 2019 IEEE International Conference on Systems,Man and Cybernetics.Piscataway:IEEE, 2019:4069-4075. |
[6] |
BROMLEY J, GUYON I, LECUN Y, et al. Signature Verification Using a "Siamese" Time Delay Neural Network[J]. International Journal of Pattern Recognition and Artificial Intelligence, 1993, 7(4):669-688.
doi: 10.1142/S0218001493000339 |
[7] | 郭惠勇. 多传感器信息融合技术的研究与进展[J]. 中国科学基金, 2005, 1:5. |
GUO Hui Yong. Researches and Advances in Multi-Sensor Information Fusion Technology[J]. Bulletin of National Natural Science Foundation of China, 2005, 1:5. | |
[8] | 余志超, 张瑞红. 结合深度轮廓特征的改进孪生网络跟踪算法[J]. 西安电子科技大学学报, 2020, 47(3):40-49. |
YU Zhichao, ZHANG Ruihong. Improved Siamese Network Based Object Tracking Combined with the Deep Contour Feature[J]. Journal of Xidian University, 2020, 47(3):40-49. | |
[9] | HAMMERLA N Y, HALLORAN S, PLÖTZ T. Deep,Convolutional,and Recurrent Models for Human Activity Recognition Using Wearables[C]// Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York: AAAI, 2016:1533-1540. |
[10] | SNOEK J, LAROCHELLE H, ADAMS R P. Practical Bayesian Optimization of Machine Learning Algorithms[EB/OL]. [2012-06-13]. https://arxiv.org/abs/1206.2944. |
[11] | LOSHCHILOV I, HUTTER F. Decoupled Weight Decay Regularization[EB/OL]. [2017-11-14]. https://doi.org/10.48550/arXiv.1711.05101. |
[12] | BAO L, INTILLE S S. Activity Recognition from User-Annotated Acceleration Data[C]// International Conference on Pervasive Computing.Berlin:Springer, 2004:1-17. |
[13] | HSU Y L, YANG S C, CHANG H C, et al. Human Daily and Sport Activity Recognition Using a Wearable Inertial Sensor Network[J]. IEEE Access, 2018:31715-31728. |
[14] | LIU R, PENG L, TONG L, et al. The Design of Wearable Wireless Inertial Measurement Unit for Body motion Capture System[C]// 2018 IEEE International Conference on Intelligence and Safety for Robotics.Piscataway:IEEE, 2018:557-562. |
[15] | SI C, JING Y, WANG W, et al. Skeleton-Based Action Recognition with Spatial Reasoning and Temporal Stack Learning[C]// Proceedings of the European Conference on Computer Vision.Berlin:Springer, 2018:103-118. |
[16] | 王波, 邓科. DB-SMOTE及多层堆叠用于心律失常识别[J]. 西安电子科技大学学报, 2021, 48(4):136-143. |
WANG Bo, DENG Ke. DB-SMOTE and Multi-Layer Stacking Used for Arrhythmia Recognition[J]. Journal of Xidian University, 2021, 48(4):136-143. | |
[17] | HAN H, WANG W Y, MAO B H. Borderline-SMOTE:A New Over-Sampling Method in Imbalanced Data Sets Learning[C]// International Conference on Intelligent Computing.Berlin:Springer, 2005:878-887. |
[18] | AHMAD W, KAZMI B M, ALI H. Human Activity Recognition Using Multi-Head CNN Followed by LSTM[C]// 2019 15th International Conference on Emerging Technologies.Piscataway:IEEE, 2019:1-6. |
[1] | QI Peihan,LI Bing,XIE Aiping,GAO Xianglan. Deep learning reconstruction algorithm for incomplete samples of frequency hopping communication signals [J]. Journal of Xidian University, 2022, 49(4): 1-7. |
[2] | JING Peiguang,LI Yaxin,SU Yuting. Micro-video multi-label classification method based on multi-modal feature encoding [J]. Journal of Xidian University, 2022, 49(4): 109-117. |
[3] | LIU Di,GUO Jichang,WANG Yudong,ZHANG Yi. Multi-scale salient object detection network combining an attention mechanism [J]. Journal of Xidian University, 2022, 49(4): 118-126. |
[4] | SHI Jiarong,LI Jinhong. Novel deep matrix factorization and its application in the recommendation system [J]. Journal of Xidian University, 2022, 49(3): 171-182. |
[5] | SHI Yunlong,YUAN Wenhao,HU Shaodong,LOU Yingxi. Convolutional quasi-recurrent network for real-time speech enhancement [J]. Journal of Xidian University, 2022, 49(3): 183-190. |
[6] | ZHANG Jing,ZHANG Xueying,CHEN Guijun,YAN Chao. EEG emotion recognition based on the 3D-CNN and spatial-frequency attention mechanism [J]. Journal of Xidian University, 2022, 49(3): 191-198. |
[7] | JIANG Fang,HUANG Xing,HU Mengyu,WANG Yi,XU Yaohua,HU Yanjun. Denoising autoencoder-aided downlink MIMO-SCMA codec method [J]. Journal of Xidian University, 2022, 49(3): 74-82. |
[8] | ZHANG Min,JIA Hairong,ZHANG Gangmin,WANG Suying. Speech enhancement combining the self-adaptive soft mask and mixed features [J]. Journal of Xidian University, 2022, 49(2): 108-115. |
[9] | WANG Yong,JIN Weizhao,FENG Wei,QUAN Yinghui. Improved violent behavior detection method for the R(2+1)D network [J]. Journal of Xidian University, 2022, 49(2): 155-163. |
[10] | ZHOU Peng,YANG Jun. Index edge geometric convolution neural network for point cloud classification [J]. Journal of Xidian University, 2022, 49(2): 207-217. |
[11] | WANG Le,ZHAO Peiyao,WANG Lanmei,WANG Guibao. Parameter estimation of the near-field source using the PCA-BPalgorithm with the array error [J]. Journal of Xidian University, 2022, 49(1): 181-187. |
[12] | WANG Yong,WANG Xiyuan,REN Zeyang. Algorithm for gradient optimization of hybrid precoding based on DNN in the millimeter wave MIMO system [J]. Journal of Xidian University, 2022, 49(1): 202-207. |
[13] | GAO Jie,HUO Zhiyong. Algorithmfor image inpainting in generative adversarial networks based on gated convolution [J]. Journal of Xidian University, 2022, 49(1): 216-224. |
[14] | ZHANG Yan,WANG Xiangyu,ZHANG Zhongwei,SUN Yemei,LIU Shudong. Boundary-aware network for building extraction from remote sensing images [J]. Journal of Xidian University, 2022, 49(1): 236-244. |
[15] | LIU Jiawei,ZHANG Wenhui,KOU Xiaoli,LI Yanni. Harnessing adversarial examples via input denoising and hidden information restoring [J]. Journal of Xidian University, 2021, 48(6): 23-31. |
|